Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝zh_TW
dc.contributor.advisorMing-Ju Chenen
dc.contributor.author黃筱雯zh_TW
dc.contributor.authorHsiao-Wen Huangen
dc.date.accessioned2023-08-30T16:14:03Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-18-
dc.identifier.citationAdijiang, A., Goto, S., Uramoto, S., Nishijima, F., & Niwa, T. (2008). Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrology Dialysis Transplantation, 23(6), 1892–1901. https://doi.org/10.1093/ndt/gfm861
Al Khodor, S., & Shatat, I. F. (2017). Gut microbiome and kidney disease: a bidirectional relationship. Pediatric Nephrology, 32(6), 921–931. https://doi.org/10.1007/s00467-016-3392-7
Allen, R. C., & Stephens Jr, J. T. (2013). Role of lactic acid bacteria-myeloperoxidase synergy in establishing and maintaining the normal flora in man. Food and Nutrition Sciences, 4(11), 67-72. http://dx.doi.org/10.4236/fns.2013.411A009
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Andersen, K., Kesper, M. S., Marschner, J. A., Konrad, L., Ryu, M., Kumar Vr, S., Kulkarni, O. P., Mulay, S. R., Romoli, S., Demleitner, J., Schiller, P., Dietrich, A., Müller, S., Gross, O., Ruscheweyh, H. J., Huson, D. H., Stecher, B., & Anders, H. J. (2017). Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD–related systemic inflammation. Journal of the American Society of Nephrology, 28(1), 76–83. https://doi.org/10.1681/ASN.2015111285
Ando, M., Shibuya, A., Tsuchiya, K., Akiba, T., & Nitta, K. (2006). Reduced expression of Toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients. Kidney international, 70(2), 358–362. https://doi.org/10.1038/sj.ki.5001548
Aronov, P. A., Luo, F. J., Plummer, N. S., Quan, Z., Holmes, S., Hostetter, T. H., & Meyer, T. W. (2011). Colonic contribution to uremic solutes. Journal of the American Society of Nephrology, 22(9), 1769–1776. https://doi.org/10.1681/ASN.2010121220
Balvočiūtė, M., & Huson, D. H. (2017). SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare?. BMC genomics, 18(Suppl 2), 114. https://doi.org/10.1186/s12864-017-3501-4
Barba, C., Soulage, C. O., Caggiano, G., Glorieux, G., Fouque, D., & Koppe, L. (2020). Effects of Fecal Microbiota Transplantation on Composition in Mice with CKD. Toxins, 12(12), 741. https://doi.org/10.3390/toxins12120741
Barrios, C., Beaumont, M., Pallister, T., Villar, J., Goodrich, J. K., Clark, A., Pascual, J., Ley, R. E., Spector, T. D., Bell, J. T., & Menni, C. (2015). Gut-microbiota-metabolite axis in early renal function decline. PloS one, 10(8), e0134311. https://doi.org/10.1371/journal.pone.0134311
Bermudez-Martin, P., Becker, J. A. J., Caramello, N., Fernandez, S. P., Costa-Campos, R., Canaguier, J., Barbosa, S., Martinez-Gili, L., Myridakis, A., Dumas, M. E., Bruneau, A., Cherbuy, C., Langella, P., Callebert, J., Launay, J. M., Chabry, J., Barik, J., Le Merrer, J., Glaichenhaus, N., & Davidovic, L. (2021). The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome, 9(1), 157. https://doi.org/10.1186/s40168-021-01103-z
Bletsa, E., Filippas-Dekouan, S., Kostara, C., Dafopoulos, P., Dimou, A., Pappa, E., Chasapi, S., Spyroulias, G., Koutsovasilis, A., Bairaktari, E., Ferrannini, E., & Tsimihodimos, V. (2021). Effect of dapagliflozin on urine metabolome in patients with type 2 diabetes. The Journal of clinical endocrinology and metabolism, 106(5), 1269–1283. https://doi.org/10.1210/clinem/dgab086
Bokoliya, S. C., Dorsett, Y., Panier, H., & Zhou, Y. (2021). Procedures for fecal microbiota transplantation in murine microbiome studies. Frontiers in cellular and infection microbiology, 11, 711055. https://doi.org/10.3389/fcimb.2021.711055
Bolati, D., Shimizu, H., Yisireyili, M., Nishijima, F., & Niwa, T. (2013). Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-κB. BMC nephrology, 14, 56. https://doi.org/10.1186/1471-2369-14-56
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
Briskey, D., Tucker, P., Johnson, D. W., & Coombes, J. S. (2017). The role of the gastrointestinal tract and microbiota on uremic toxins and chronic kidney disease development. Clinical and experimental nephrology, 21(1), 7–15. https://doi.org/10.1007/s10157-016-1255-y
Cai, H., Su, S., Li, Y., Zhu, Z., Guo, J., Zhu, Y., Guo, S., Qian, D., & Duan, J. (2019). Danshen can interact with intestinal bacteria from normal and chronic renal failure rats. Biomedicine & Pharmacotherapy, 109, 1758–1771. https://doi.org/10.1016/j.biopha.2018.11.047
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421
Cani P. D. (2017). Gut microbiota - at the intersection of everything?. Nature reviews. Gastroenterology & hepatology, 14(6), 321–322. https://doi.org/10.1038/nrgastro.2017.54
Caussy, C., Tripathi, A., Humphrey, G., Bassirian, S., Singh, S., Faulkner, C., Bettencourt, R., Rizo, E., Richards, L., Xu, Z. Z., Downes, M. R., Evans, R. M., Brenner, D. A., Sirlin, C. B., Knight, R., & Loomba, R. (2019). A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nature communications, 10(1), 1406. https://doi.org/10.1038/s41467-019-09455-9
Ceballos-Picot, I., Witko-Sarsat, V., Merad-Boudia, M., Nguyen, A. T., Thévenin, M., Jaudon, M. C., Zingraff, J., Verger, C., Jungers, P., & Descamps-Latscha, B. (1996). Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free radical biology & medicine, 21(6), 845–853. https://doi.org/10.1016/0891-5849(96)00233-x
Chen, W. T., Chen, Y. C., Hsieh, M. H., Huang, S. Y., Kao, Y. H., Chen, Y. A., Lin, Y. K., Chen, S. A., & Chen, Y. J. (2015). The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis. Journal of cardiovascular electrophysiology, 26(2), 203–210. https://doi.org/10.1111/jce.12554
Cheng, F. P., Hsieh, M. J., Chou, C. C., Hsu, W. L., & Lee, Y. J. (2015). Detection of indoxyl sulfate levels in dogs and cats suffering from naturally occurring kidney diseases. The Veterinary Journal, 205(3), 399–403. https://doi.org/10.1016/j.tvjl.2015.04.017
Choi, E., Yang, J., Ji, G. E., Park, M. S., Seong, Y., Oh, S. W., Kim, M. G., Cho, W. Y., & Jo, S. K. (2022). The effect of probiotic supplementation on systemic inflammation in dialysis patients. Kidney research and clinical practice, 41(1), 89–101. https://doi.org/10.23876/j.krcp.21.014
Clarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut reactions: breaking down xenobiotic-microbiome interactions. Pharmacological reviews, 71(2), 198–224. https://doi.org/10.1124/pr.118.015768
Cosola, C., Rocchetti, M. T., di Bari, I., Acquaviva, P. M., Maranzano, V., Corciulo, S., Di Ciaula, A., Di Palo, D. M., La Forgia, F. M., Fontana, S., De Angelis, M., Portincasa, P., & Gesualdo, L. (2021). An innovative synbiotic formulation decreases free serum indoxyl sulfate, small intestine permeability and ameliorates gastrointestinal symptoms in a randomized pilot trial in stage IIIb-IV CKD patients. Toxins, 13(5), 334. https://doi.org/10.3390/toxins13050334
Cosola, C., Rocchetti, M. T., Sabatino, A., Fiaccadori, E., Di Iorio, B. R., & Gesualdo, L. (2019). Microbiota issue in CKD: how promising are gut-targeted approaches?. Journal of nephrology, 32(1), 27–37. https://doi.org/10.1007/s40620-018-0516-0
Cruz-Mora, J., Martínez-Hernández, N. E., Martín del Campo-López, F., Viramontes-Hörner, D., Vizmanos-Lamotte, B., Muñoz-Valle, J. F., García-García, G., Parra-Rojas, I., & Castro-Alarcón, N. (2014). Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. Journal of renal nutrition, 24(5), 330–335. https://doi.org/10.1053/j.jrn.2014.05.006
Davenport A. (2017). More frequent hemodialysis does not effectively clear protein-bound azotemic solutes derived from gut microbiome metabolism. Kidney international, 91(5), 1008–1010. https://doi.org/10.1016/j.kint.2016.12.036
Davila, A. M., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P. H., Sanz, Y., & Tomé, D. (2013). Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacological research, 68(1), 95–107. https://doi.org/10.1016/j.phrs.2012.11.005
De Angelis, M., Montemurno, E., Piccolo, M., Vannini, L., Lauriero, G., Maranzano, V., Gozzi, G., Serrazanetti, D., Dalfino, G., Gobbetti, M., & Gesualdo, L. (2014). Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PloS one, 9(6), e99006. https://doi.org/10.1371/journal.pone.0099006
de Araújo, É. M. R., Meneses, G. C., Carioca, A. A. F., Martins, A. M. C., Daher, E. F., & da Silva Junior, G. B. (2022). Use of probiotics in patients with chronic kidney disease on hemodialysis: a randomized clinical trial. Brazilian Journal of Nephrology, S0101-28002022005045403. https://doi.org/10.1590/2175-8239-JBN-2022-0021en
Dehghani, H., Heidari, F., Mozaffari-Khosravi, H., Nouri-Majelan, N., & Dehghani, A. (2016). Synbiotic supplementations for azotemia in patients with chronic kidney disease: a randomized controlled trial. Iranian journal of kidney diseases, 10(6), 351–357.
Depommier, C., Van Hul, M., Everard, A., Delzenne, N. M., De Vos, W. M., & Cani, P. D. (2020). Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut microbes, 11(5), 1231–1245. https://doi.org/10.1080/19490976.2020.1737307
Dieterich, W., Schink, M., & Zopf, Y. (2018). Microbiota in the gastrointestinal tract. Medical sciences, 6(4), 116. https://doi.org/10.3390/medsci6040116
Domingo, M. C., Huletsky, A., Boissinot, M., Bernard, K. A., Picard, F. J., & Bergeron, M. G. (2008). Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. International journal of systematic and evolutionary microbiology, 58(6), 1393–1397. https://doi.org/10.1099/ijs.0.65259-0
Dou, L., Bertrand, E., Cerini, C., Faure, V., Sampol, J., Vanholder, R., Berland, Y., & Brunet, P. (2004). The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney international, 65(2), 442–451. https://doi.org/10.1111/j.1523-1755.2004.00399.x
Du, G., Huang, H., Zhu, Q., & Ying, L. (2021). Effects of cat ownership on the gut microbiota of owners. PloS one, 16(6), e0253133. https://doi.org/10.1371/journal.pone.0253133
Durand, G. A., Lagier, J. C., Khelaifia, S., Armstrong, N., Robert, C., Rathored, J., Fournier, P. E., & Raoult, D. (2016). Drancourtella massiliensis gen. nov., sp. nov. isolated from fresh healthy human faecal sample from South France. New microbes and new infections, 11, 34–42. https://doi.org/10.1016/j.nmni.2016.02.002
Duranton, F., Cohen, G., De Smet, R., Rodriguez, M., Jankowski, J., Vanholder, R., Argiles, A., & European Uremic Toxin Work Group (2012). Normal and pathologic concentrations of uremic toxins. Journal of the American Society of Nephrology, 23(7), 1258–1270. https://doi.org/10.1681/ASN.2011121175
Edamatsu, T., Fujieda, A., & Itoh, Y. (2018). Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PloS one, 13(2), e0193342. https://doi.org/10.1371/journal.pone.0193342
Edeling, M., Ragi, G., Huang, S., Pavenstädt, H., & Susztak, K. (2016). Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nature reviews. Nephrology, 12(7), 426–439. https://doi.org/10.1038/nrneph.2016.54
Eidi, F., Poor-Reza Gholi, F., Ostadrahimi, A., Dalili, N., Samadian, F., & Barzegari, A. (2018). Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and P-Cresol) in hemodialysis patients: A double blind randomized clinical trial. Clinical nutrition ESPEN, 28, 158–164. https://doi.org/10.1016/j.clnesp.2018.08.010
El Hage, R., Hernandez-Sanabria, E., & Van de Wiele, T. (2017). Emerging trends in "smart probiotics": functional consideration for the development of novel health and industrial applications. Frontiers in microbiology, 8, 1889. https://doi.org/10.3389/fmicb.2017.01889
Enomoto, A., Takeda, M., Tojo, A., Sekine, T., Cha, S. H., Khamdang, S., Takayama, F., Aoyama, I., Nakamura, S., Endou, H., & Niwa, T. (2002). Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. Journal of the American Society of Nephrology, 13(7), 1711–1720. https://doi.org/10.1097/01.asn.0000022017.96399.b2
Esgalhado, M., Kemp, J. A., Damasceno, N. R., Fouque, D., & Mafra, D. (2017). Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future microbiology, 12, 1413–1425. https://doi.org/10.2217/fmb-2017-0059
Evenepoel, P., Meijers, B. K., Bammens, B. R., & Verbeke, K. (2009). Uremic toxins originating from colonic microbial metabolism. Kidney international. Supplement, 76 (114), S12–S19. https://doi.org/10.1038/ki.2009.402
Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Furuse, S. U., Ohse, T., Jo-Watanabe, A., Shigehisa, A., Kawakami, K., Matsuki, T., Chonan, O., & Nangaku, M. (2014). Galacto-oligosaccharides attenuate renal injury with microbiota modification. Physiological reports, 2(7), e12029. https://doi.org/10.14814/phy2.12029
Galler, A., Tran, J. L., Krammer-Lukas, S., Höller, U., Thalhammer, J. G., Zentek, J., & Willmann, M. (2012). Blood vitamin levels in dogs with chronic kidney disease. The Veterinary Journal, 192(2), 226-231. https://doi.org/10.1016/j.tvjl.2011.06.026
Bikbov, B., Purcell, C. A., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., ... & Owolabi, M. O. (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The lancet, 395(10225), 709-733. https://doi.org/10.1016/S0140-6736(20)30045-3
Gondouin, B., Cerini, C., Dou, L., Sallée, M., Duval-Sabatier, A., Pletinck, A., Calaf, R., Lacroix, R., Jourde-Chiche, N., Poitevin, S., Arnaud, L., Vanholder, R., Brunet, P., Dignat-George, F., & Burtey, S. (2013). Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney international, 84(4), 733–744. https://doi.org/10.1038/ki.2013.133
Gryp, T., Vanholder, R., Vaneechoutte, M., & Glorieux, G. (2017). p-Cresyl Sulfate. Toxins, 9(2), 52. https://doi.org/10.3390/toxins9020052
Guida, B., Germanò, R., Trio, R., Russo, D., Memoli, B., Grumetto, L., Barbato, F., & Cataldi, M. (2014). Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutrition, Metabolism and Cardiovascular Diseases, 24(9), 1043–1049. https://doi.org/10.1016/j.numecd.2014.04.007
Guldris, S. C., Parra, E. G., & Amenós, A. C. (2017). Gut microbiota in chronic kidney disease. Nefrología (English Edition), 37(1), 9-19. https://doi.org/10.1016/j.nefro.2016.05.008
Gyarmati, P., Kjellander, C., Aust, C., Song, Y., Öhrmalm, L., & Giske, C. G. (2016). Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Scientific reports, 6, 23532. https://doi.org/10.1038/srep23532
Hall, J. A., Jewell, D. E., & Ephraim, E. (2022). Feeding cats with chronic kidney disease food supplemented with betaine and prebiotics increases total body mass and reduces uremic toxins. PloS one, 17(5), e0268624. https://doi.org/10.1371/journal.pone.0268624
Hall, J. A., Yerramilli, M., Obare, E., Yerramilli, M., & Jewell, D. E. (2014). Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. Journal of veterinary internal medicine, 28(6), 1676–1683. https://doi.org/10.1111/jvim.12445
He, X., Sun, J., Liu, C., Yu, X., Li, H., Zhang, W., Li, Y., Geng, Y., & Wang, Z. (2022). Compositional alterations of gut microbiota in patients with diabetic kidney disease and type 2 diabetes mellitus. Diabetes, metabolic syndrome and obesity : targets and therapy, 15, 755–765. https://doi.org/10.2147/DMSO.S347805
Herman-Edelstein, M., Weinstein, T., & Levi, M. (2018). Bile acid receptors and the kidney. Current opinion in nephrology and hypertension, 27(1), 56–62. https://doi.org/10.1097/MNH.0000000000000374
Hida, M., Aiba, Y., Sawamura, S., Suzuki, N., Satoh, T., & Koga, Y. (1996). Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron, 74(2), 349–355. https://doi.org/10.1159/000189334
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews. Gastroenterology & hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
Hong, X., Chen, J., Liu, L., Wu, H., Tan, H., Xie, G., Xu, Q., Zou, H., Yu, W., Wang, L., & Qin, N. (2016). Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine. Scientific reports, 6, 26621. https://doi.org/10.1038/srep26621
Hu, X., Ouyang, S., Xie, Y., Gong, Z., & Du, J. (2020). Characterizing the gut microbiota in patients with chronic kidney disease. Postgraduate medicine, 132(6), 495–505. https://doi.org/10.1080/00325481.2020.1744335
Huang, H., Li, K., Lee, Y., & Chen, M. (2021). Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins. Journal of agricultural and food chemistry, 69(26), 7353–7366. https://doi.org/10.1021/acs.jafc.1c01547
Humphreys B. D. (2018). Mechanisms of renal fibrosis. Annual review of physiology, 80, 309–326. https://doi.org/10.1146/annurev-physiol-022516-034227
Ikeyama, N., Toyoda, A., Morohoshi, S., Kunihiro, T., Murakami, T., Mori, H., Iino, T., Ohkuma, M., & Sakamoto, M. (2020). Amedibacterium intestinale gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium dolichum Moore et al. 1976 (Approved Lists 1980) as Amedibacillus dolichus gen. nov., comb. nov. International journal of systematic and evolutionary microbiology, 70(6), 3656–3664. https://doi.org/10.1099/ijsem.0.004215
Inness, V. L., McCartney, A. L., Khoo, C., Gross, K. L., & Gibson, G. R. (2007). Molecular characterisation of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp. Journal of animal physiology and animal nutrition, 91(1-2), 48–53. https://doi.org/10.1111/j.1439-0396.2006.00640.x
International Renal Interest Society. (2023a). IRIS staging of CKD (modified 2023). http://iris-kidney.com/pdf/2_IRIS_Staging_of_CKD_2023.pdf (accessed June 1, 2023)
International Renal Interest Society. (2023b). IRIS CKD pocket guide. http://iris-kidney.com/pdf/IRIS_Pocket_Guide_to_CKD_2023.pdf (accessed June 1, 2023)
Ito, S., Osaka, M., Higuchi, Y., Nishijima, F., Ishii, H., & Yoshida, M. (2010). Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. The Journal of biological chemistry, 285(50), 38869–38875. https://doi.org/10.1074/jbc.M110.166686
Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y., & Niwa, T. (2012). Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Analytical and bioanalytical chemistry, 403(7), 1841–1850. https://doi.org/10.1007/s00216-012-5929-3
Jager, K. J., Kovesdy, C., Langham, R., Rosenberg, M., Jha, V., & Zoccali, C. (2019). A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney international, 96(5), 1048–1050. https://doi.org/10.1016/j.kint.2019.07.012
Janeczko, S., Atwater, D., Bogel, E., Greiter-Wilke, A., Gerold, A., Baumgart, M., Bender, H., McDonough, P. L., McDonough, S. P., Goldstein, R. E., & Simpson, K. W. (2008). The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease. Veterinary microbiology, 128(1-2), 178–193. https://doi.org/10.1016/j.vetmic.2007.10.014
Jiang, S., Xie, S., Lv, D., Wang, P., He, H., Zhang, T., Zhou, Y., Lin, Q., Zhou, H., Jiang, J., Nie, J., Hou, F., & Chen, Y. (2017). Alteration of the gut microbiota in Chinese population with chronic kidney disease. Scientific reports, 7(1), 2870. https://doi.org/10.1038/s41598-017-02989-2
Karu, N., McKercher, C., Nichols, D. S., Davies, N., Shellie, R. A., Hilder, E. F., & Jose, M. D. (2016). Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study. BMC nephrology, 17(1), 171. https://doi.org/10.1186/s12882-016-0387-3
Kates, A. E., Jarrett, O., Skarlupka, J. H., Sethi, A., Duster, M., Watson, L., Suen, G., Poulsen, K., & Safdar, N. (2020). Household pet ownership and the microbial diversity of the human gut microbiota. Frontiers in cellular and infection microbiology, 10, 73. https://doi.org/10.3389/fcimb.2020.00073
Kato, S., Chmielewski, M., Honda, H., Pecoits-Filho, R., Matsuo, S., Yuzawa, Y., Tranaeus, A., Stenvinkel, P., & Lindholm, B. (2008). Aspects of immune dysfunction in end-stage renal disease. Clinical journal of the American Society of Nephrology, 3(5), 1526–1533. https://doi.org/10.2215/CJN.00950208
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Ke, X., Walker, A., Haange, S. B., Lagkouvardos, I., Liu, Y., Schmitt-Kopplin, P., von Bergen, M., Jehmlich, N., He, X., Clavel, T., & Cheung, P. C. K. (2019). Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular metabolism, 22, 96–109. https://doi.org/10.1016/j.molmet.2019.01.012
Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Kimura, T., Yasuda, K., Yamamoto, R., Soga, T., Rakugi, H., Hayashi, T., & Isaka, Y. (2016). Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Scientific reports, 6, 26138. https://doi.org/10.1038/srep26138
Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T., & Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in microbiology, 164(7), 701–709. https://doi.org/10.1016/j.resmic.2013.04.004
Kitahara, M., Takamine, F., Imamura, T., & Benno, Y. (2001). Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. International journal of systematic and evolutionary microbiology, 51(1), 39–44. https://doi.org/10.1099/00207713-51-1-39
Koppe, L., Mafra, D., & Fouque, D. (2015). Probiotics and chronic kidney disease. Kidney international, 88(5), 958–966. https://doi.org/10.1038/ki.2015.255
Koppe, L., Pillon, N. J., Vella, R. E., Croze, M. L., Pelletier, C. C., Chambert, S., Massy, Z., Glorieux, G., Vanholder, R., Dugenet, Y., Soula, H. A., Fouque, D., & Soulage, C. O. (2013). p-Cresyl sulfate promotes insulin resistance associated with CKD. Journal of the American Society of Nephrology, 24(1), 88–99. https://doi.org/10.1681/ASN.2012050503
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Kuroki, Y., Tsuchida, K., Go, I., Aoyama, M., Naganuma, T., Takemoto, Y., & Nakatani, T. (2007). A study of innate immunity in patients with end-stage renal disease: special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients. International journal of molecular medicine, 19(5), 783–790. https://doi.org/10.3892/ijmm.19.5.783
Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676
Lawson, P. A., Greetham, H. L., Gibson, G. R., Giffard, C., Falsen, E., & Collins, M. D. (2005). Slackia faecicanis sp. nov., isolated from canine faeces. International journal of systematic and evolutionary microbiology, 55(3), 1243-1246. https://doi.org/10.1099/ijs.0.63531-0
LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., & Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial cell factories, 16(1), 79. https://doi.org/10.1186/s12934-017-0691-z
Lee, J., Choi, J. Y., Kwon, Y. K., Lee, D., Jung, H. Y., Ryu, H. M., Cho, J. H., Ryu, D. H., Kim, Y. L., & Hwang, G. S. (2016). Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clinica Chimica Acta, 459, 123–131. https://doi.org/10.1016/j.cca.2016.05.018
Lekawanvijit, S. (2015). Role of gut-derived protein-bound uremic toxins in cardiorenal syndrome and potential treatment modalities. Circulation Journal, 79(10), 2088–2097. https://doi.org/10.1253/circj.CJ-15-0749
Lekawanvijit, S., Adrahtas, A., Kelly, D. J., Kompa, A. R., Wang, B. H., & Krum, H. (2010). Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?. European heart journal, 31(14), 1771–1779. https://doi.org/10.1093/eurheartj/ehp574
León-Del-Río A. (2019). Biotin in metabolism, gene expression, and human disease. Journal of inherited metabolic disease, 42(4), 647–654. https://doi.org/10.1002/jimd.12073
Levey, A. S., & Coresh, J. (2012). Chronic kidney disease. The lancet, 379(9811), 165–180. https://doi.org/10.1016/S0140-6736(11)60178-5
Levin, A., Stevens, P. E., Bilous, R. W., Coresh, J., De Francisco, A. L. M., De Jong, P. E., Griffith, K. E., Hemmelgarn, B. R., Iseki, K., Lamb, E. J., Levey, A. S., Riella, M. C., Shlipak, M. G., Wang, H., White, C. T., & Winearls, C. G. (2013). Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements, 3(1), 1-150. https://doi.org/10.1038/kisup.2012.73
Li, F., Wang, M., Wang, J., Li, R., & Zhang, Y. (2019). Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Frontiers in cellular and infection microbiology, 9, 206. https://doi.org/10.3389/fcimb.2019.00206
Lim, P. S., Wang, H. F., Lee, M. C., Chiu, L. S., Wu, M. Y., Chang, W. C., & Wu, T. K. (2021a). The efficacy of Lactobacillus-containing probiotic supplementation in hemodialysis patients: a randomized, double-blind, placebo-controlled trial. Journal of Renal Nutrition, 31(2), 189–198. https://doi.org/10.1053/j.jrn.2020.07.002
Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021b). Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins, 13(2), 142. https://doi.org/10.3390/toxins13020142
Lin, T. L., Shu, C. C., Lai, W. F., Tzeng, C. M., Lai, H. C., & Lu, C. C. (2019). Investiture of next generation probiotics on amelioration of diseases–Strains do matter. Medicine in Microecology, 1, 100002. https://doi.org/10.1016/j.medmic.2019.100002
Lippi, I., Perondi, F., Ceccherini, G., Marchetti, V., & Guidi, G. (2017). Effects of probiotic VSL#3 on glomerular filtration rate in dogs affected by chronic kidney disease: A pilot study. The Canadian Veterinary Journal, 58(12), 1301–1305.
Liu, S., Liu, H., Chen, L., Liang, S. S., Shi, K., Meng, W., Xue, J., He, Q., & Jiang, H. (2020). Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. European journal of nutrition, 59(8), 3755–3766. https://doi.org/10.1007/s00394-020-02207-2
Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., Zhao, J., Zhang, H., & Chen, W. (2021). Blautia-a new functional genus with potential probiotic properties?. Gut microbes, 13(1), 1–21. https://doi.org/10.1080/19490976.2021.1875796
Liu, X., Zhang, M., Wang, X., Liu, P., Wang, L., Li, Y., Wang, X., & Ren, F. (2022). Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Frontiers in microbiology, 13, 1037257. https://doi.org/10.3389/fmicb.2022.1037257
Liu, Y., Li, J., Yu, J., Wang, Y., Lu, J., Shang, E. X., Zhu, Z., Guo, J., & Duan, J. (2018). Disorder of gut amino acids metabolism during CKD progression is related with gut microbiota dysbiosis and metagenome change. Journal of pharmaceutical and biomedical analysis, 149, 425–435. https://doi.org/10.1016/j.jpba.2017.11.040
Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-2920.13589
Lozupone, C., Lladser, M., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: an effective distance metric for microbial community comparison. The ISME journal, 5(2), 169-172. https://doi.org/10.1038/ismej.2010.133
Lu, C. Y., Chen, Y. C., Lu, Y. W., Muo, C. H., & Chang, R. E. (2019). Association of constipation with risk of end-stage renal disease in patients with chronic kidney disease. BMC nephrology, 20(1), 304. https://doi.org/10.1186/s12882-019-1481-0
Lun, H., Yang, W., Zhao, S., Jiang, M., Xu, M., Liu, F., & Wang, Y. (2019). Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. MicrobiologyOpen, 8(4), e00678. https://doi.org/10.1002/mbo3.678
Lundberg, R., Toft, M. F., August, B., Hansen, A. K., & Hansen, C. H. (2016). Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut microbes, 7(1), 68–74. https://doi.org/10.1080/19490976.2015.1127463
Lyu, Y., Su, C., Verbrugghe, A., Van de Wiele, T., Martos Martinez-Caja, A., & Hesta, M. (2020). Past, present, and future of gastrointestinal microbiota research in cats. Frontiers in microbiology, 11, 1661. https://doi.org/10.3389/fmicb.2020.01661
MacDonald, M. L., Rogers, Q. R., & Morris, J. G. (1984). Nutrition of the domestic cat, a mammalian carnivore. Annual review of nutrition, 4, 521–562. https://doi.org/10.1146/annurev.nu.04.070184.002513
Marino, C. L., Lascelles, B. D., Vaden, S. L., Gruen, M. E., & Marks, S. L. (2014). Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. Journal of feline medicine and surgery, 16(6), 465–472. https://doi.org/10.1177/1098612X13511446
Martinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell host & microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011
Martín-Mateo, M. C., Sánchez-Portugal, M., Iglesias, S., de Paula, A., & Bustamante, J. (1999). Oxidative stress in chronic renal failure. Renal failure, 21(2), 155–167. https://doi.org/10.3109/08860229909066980
Meineri, G., Saettone, V., Radice, E., Bruni, N., Martello, E., & Bergero, D. (2021). The synergistic effect of prebiotics, probiotics and antioxidants on dogs with chronic kidney disease. Italian Journal of Animal Science, 20(1), 1079-1084. https://doi.org/10.1080/1828051X.2021.1940323
Mendoza, M. E., Monte, M. J., Serrano, M. A., Pastor-Anglada, M., Stieger, B., Meier, P. J., Medarde, M., & Marin, J. J. (2003). Physiological characteristics of allo-cholic acid. Journal of lipid research, 44(1), 84–92. https://doi.org/10.1194/jlr.m200220-jlr200
Miller, L. E., Ibarra, A., & Ouwehand, A. C. (2017). Normative values for colonic transit time and patient assessment of constipation in adults with functional constipation: systematic review with meta-analysis. Clinical Medicine Insights: Gastroenterology, 11, 1179552217729343. https://doi.org/10.1177/1179552217729343
Miranda Alatriste, P. V., Urbina Arronte, R., Gómez Espinosa, C. O., & Espinosa Cuevas, M.deL. (2014). Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutricion hospitalaria, 29(3), 582–590. https://doi.org/10.3305/nh.2014.29.3.7179
Mishima, E., Fukuda, S., Mukawa, C., Yuri, A., Kanemitsu, Y., Matsumoto, Y., Akiyama, Y., Fukuda, N. N., Tsukamoto, H., Asaji, K., Shima, H., Kikuchi, K., Suzuki, C., Suzuki, T., Tomioka, Y., Soga, T., Ito, S., & Abe, T. (2017). Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney international, 92(3), 634–645. https://doi.org/10.1016/j.kint.2017.02.011
Mitrović, M., Stanković-Popović, V., Tolinački, M., Golić, N., Soković Bajić, S., Veljović, K., Nastasijević, B., Soldatović, I., Svorcan, P., & Dimković, N. (2022). The impact of synbiotic treatment on the levels of gut-derived uremic toxins, inflammation, and gut microbiome of chronic kidney disease patients-a Randomized trial. Journal of renal nutrition, 33(2), 278-288. https://doi.org/10.1053/j.jrn.2022.07.008
Miyake, T., Watanabe, K., Watanabe, T., & Oyaizu, H. (1998). Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiology and immunology, 42(10), 661–667. https://doi.org/10.1111/j.1348-0421.1998.tb02337.x
Miyamoto, Y., Watanabe, H., Noguchi, T., Kotani, S., Nakajima, M., Kadowaki, D., Otagiri, M., & Maruyama, T. (2011). Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrology Dialysis Transplantation, 26(8), 2498–2502. https://doi.org/10.1093/ndt/gfq785
Mokarram, R. R., Mortazavi, S. A., Najafi, M. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040-1045. https://doi.org/10.1016/j.foodres.2009.04.023
Moldave, K., & Meister, A. (1957). Synthesis of phenylacetylglutamine by human tissue. The Journal of biological chemistry, 229(1), 463–476.
Moradi, H., Sica, D. A., & Kalantar-Zadeh, K. (2013). Cardiovascular burden associated with uremic toxins in patients with chronic kidney disease. American journal of nephrology, 38(2), 136–148. https://doi.org/10.1159/000351758
Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E., & Bokkenheuser, V. D. (1985). Clostridium scindens sp. nov., a human intestinal bacterium with desmolytic activity on corticoids. International Journal of Systematic and Evolutionary Microbiology, 35(4), 478-481. https://doi.org/10.1099/00207713-35-4-478
Muteliefu, G., Enomoto, A., Jiang, P., Takahashi, M., & Niwa, T. (2009a). Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrology Dialysis Transplantation, 24(7), 2051–2058. https://doi.org/10.1093/ndt/gfn757
Muteliefu, G., Enomoto, A., & Niwa, T. (2009b). Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. Journal of Renal Nutrition, 19(1), 29–32. https://doi.org/10.1053/j.jrn.2008.10.014
Nagano, Y., Itoh, K., & Honda, K. (2012). The induction of Treg cells by gut-indigenous Clostridium. Current opinion in immunology, 24(4), 392–397. https://doi.org/10.1016/j.coi.2012.05.007
Nakabayashi, I., Nakamura, M., Kawakami, K., Ohta, T., Kato, I., Uchida, K., & Yoshida, M. (2011). Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrology Dialysis Transplantation, 26(3), 1094–1098. https://doi.org/10.1093/ndt/gfq624
Naser, S. M., Dawyndt, P., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Vancanneyt, M., & Swings, J. (2007). Identification of lactobacilli by pheS and rpoA gene sequence analyses. International journal of systematic and evolutionary microbiology, 57(12), 2777–2789. https://doi.org/10.1099/ijs.0.64711-0
Natarajan, R., Pechenyak, B., Vyas, U., Ranganathan, P., Weinberg, A., Liang, P., Mallappallil, M. C., Norin, A. J., Friedman, E. A., & Saggi, S. J. (2014). Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. BioMed research international, 2014, 568571. https://doi.org/10.1155/2014/568571
National health insurance administration. (2021a). National health insurance annual statistical report 2021. https://www.nhi.gov.tw/DL.aspx?sitessn=292&u=LzAwMS9VcGxvYWQvMjkyL3JlbGZpbGUvMC8xNTIxMTEvMTEw5bm05YWo5rCR5YGl5bq35L%2bd6Zqq57Wx6KiILnBkZg%3d%3d&n=MTEw5bm05YWo5rCR5YGl5bq35L%2bd6Zqq57Wx6KiILnBkZg%3d%3d&ico%20=.pdf (accessed June 1, 2023)
National health insurance administration. (2021b). National health insurance medical treatment disease in 2021. https://www.nhi.gov.tw/DL.aspx?sitessn=292&u=LzAwMS9VcGxvYWQvMjkyL3JlbGZpbGUvMC8xNTMzMzcvMjAyMeW5tOWci%2bS6uuWFqOawkeWBpeW6t%2bS%2fnemaquWwsemGq%2beWvueXheizh%2bioii0xMTIwMjE4LnBkZg%3d%3d&n=MjAyMeW5tOWci%2bS6uuWFqOawkeWBpeW6t%2bS%2fnemaquWwsemGq%2beWvueXheizh%2bioii0xMTIwMjE4LnBkZg%3d%3d&ico%20=.pdf (accessed June 1, 2023)
Neis, E. P., Dejong, C. H., & Rensen, S. S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930–2946. https://doi.org/10.3390/nu7042930
O’Toole, P. W., Marchesi, J. R., & Hill, C. (2017). Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature microbiology, 2(5), 17057. https://doi.org/10.1038/nmicrobiol.2017.57
O'Farrell, K., & Harkin, A. (2017). Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology, 112, 307–323. https://doi.org/10.1016/j.neuropharm.2015.12.004
O'Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural brain research, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027
O'Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C., & Brodbelt, D. C. (2015). Longevity and mortality of cats attending primary care veterinary practices in England. Journal of feline medicine and surgery, 17(2), 125–133. https://doi.org/10.1177/1098612X14536176
Ottosson, F., Brunkwall, L., Smith, E., Orho-Melander, M., Nilsson, P. M., Fernandez, C., & Melander, O. (2020). The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease. Journal of hypertension, 38(12), 2427–2434. https://doi.org/10.1097/HJH.0000000000002569
Owada, S., Goto, S., Bannai, K., Hayashi, H., Nishijima, F., & Niwa, T. (2008). Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. American journal of nephrology, 28(3), 446–454. https://doi.org/10.1159/000112823
Pamporaki, C., Prejbisz, A., Małecki, R., Pistrosch, F., Peitzsch, M., Bishoff, S., Mueller, P., Meyer, I., Reimann, D., Hanus, K., Januszewicz, A., Bornstein, S. R., Parmentier, S., Kunath, C., Lenders, J. W. M., Eisenhofer, G., & Passauer, J. (2018). Optimized reference intervals for plasma free metanephrines in patients With CKD. American journal of kidney diseases, 72(6), 907–909. https://doi.org/10.1053/j.ajkd.2018.06.018
Patten, C. L., Blakney, A. J., & Coulson, T. J. (2013). Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Critical reviews in microbiology, 39(4), 395–415. https://doi.org/10.3109/1040841X.2012.716819
Pawlak, K., Mysliwiec, M., & Pawlak, D. (2008). Oxidative stress, phosphate and creatinine levels are independently associated with vascular endothelial growth factor levels in patients with chronic renal failure. Cytokine, 43(1), 98–101. https://doi.org/10.1016/j.cyto.2008.03.011
Petrosino J. F. (2018). The microbiome in precision medicine: the way forward. Genome medicine, 10(1), 12. https://doi.org/10.1186/s13073-018-0525-6
Pontillo, C., Jacobs, L., Staessen, J. A., Schanstra, J. P., Rossing, P., Heerspink, H. J. L., Siwy, J., Mullen, W., Vlahou, A., Mischak, H., Vanholder, R., Zürbig, P., & Jankowski, J. (2017). A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrology Dialysis Transplantation, 32(9), 1510–1516. https://doi.org/10.1093/ndt/gfw239
Pretorius, C. J., McWhinney, B. C., Sipinkoski, B., Johnson, L. A., Rossi, M., Campbell, K. L., & Ungerer, J. P. (2013). Reference ranges and biological variation of free and total serum indoxyl- and p-cresyl sulphate measured with a rapid UPLC fluorescence detection method. Clinica chimica acta, 419, 122–126. https://doi.org/10.1016/j.cca.2013.02.008
Prokopienko, A. J., & Nolin, T. D. (2018). Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert review of clinical pharmacology, 11(1), 71–82. https://doi.org/10.1080/17512433.2018.1378095
Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S., & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. FEMS microbiology letters, 217(2), 133–139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
Qin, P., Zou, Y., Dai, Y., Luo, G., Zhang, X., & Xiao, L. (2019). Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. shenzhenensis subsp. nov. Microorganisms, 7(3). https://doi.org/10.3390/microorganisms7030078
Quigley E. M. M. (2017). Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?. Nature Reviews Gastroenterology & Hepatology, 14(5), 315–320. https://doi.org/10.1038/nrgastro.2017.29
Quin, C., Estaki, M., Vollman, D. M., Barnett, J. A., Gill, S. K., & Gibson, D. L. (2018). Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Scientific reports, 8(1), 8283. https://doi.org/10.1038/s41598-018-26423-3
Ramezani, A., Massy, Z. A., Meijers, B., Evenepoel, P., Vanholder, R., & Raj, D. S. (2016). Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American journal of kidney diseases, 67(3), 483–498. https://doi.org/10.1053/j.ajkd.2015.09.027
Ranganathan, N., Friedman, E. A., Tam, P., Rao, V., Ranganathan, P., & Dheer, R. (2009). Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Current medical research and opinion, 25(8), 1919–1930. https://doi.org/10.1185/03007990903069249
Ranganathan, N., Ranganathan, P., Friedman, E. A., Joseph, A., Delano, B., Goldfarb, D. S., Tam, P., Rao, A. V., Anteyi, E., & Musso, C. G. (2010). Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Advances in therapy, 27(9), 634–647. https://doi.org/10.1007/s12325-010-0059-9
Remuzzi, G., Benigni, A., & Remuzzi, A. (2006). Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. The Journal of clinical investigation, 116(2), 288–296. https://doi.org/10.1172/JCI27699
Ren, Z., Fan, Y., Li, A., Shen, Q., Wu, J., Ren, L., Lu, H., Ding, S., Ren, H., Liu, C., Liu, W., Gao, D., Wu, Z., Guo, S., Wu, G., Liu, Z., Yu, Z., & Li, L. (2020). Alterations of the human gut microbiome in chronic kidney disease. Advanced science, 7(20), 2001936. https://doi.org/10.1002/advs.202001936
Rhee E. P. (2018). How omics data can be used in nephrology. American journal of kidney diseases, 72(1), 129–135. https://doi.org/10.1053/j.ajkd.2017.12.008
Rishniw, M., & Wynn, S. G. (2011). Azodyl, a synbiotic, fails to alter azotemia in cats with chronic kidney disease when sprinkled onto food. Journal of feline medicine and surgery, 13(6), 405–409. https://doi.org/10.1016/j.jfms.2010.12.015
Ritchie, L. E., Steiner, J. M., & Suchodolski, J. S. (2008). Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS microbiology ecology, 66(3), 590–598. https://doi.org/10.1111/j.1574-6941.2008.00609.x
Rochus, K., Janssens, G. P., & Hesta, M. (2014). Dietary fibre and the importance of the gut microbiota in feline nutrition: a review. Nutrition research reviews, 27(2), 295–307. https://doi.org/10.1017/S0954422414000213
Rodríguez-Ortiz, M. E., Pontillo, C., Rodríguez, M., Zürbig, P., Mischak, H., & Ortiz, A. (2018). Novel urinary biomarkers for improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Scientific reports, 8(1), 15940. https://doi.org/10.1038/s41598-018-34386-8
Roh, S. W., Abell, G. C., Kim, K. H., Nam, Y. D., & Bae, J. W. (2010). Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends in biotechnology, 28(6), 291–299. https://doi.org/10.1016/j.tibtech.2010.03.001
Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., Massy, Z., Wanner, C., & Anders, H. J. (2017). Chronic kidney disease. Nature reviews. Disease primers, 3, 17088. https://doi.org/10.1038/nrdp.2017.88
Rossi, M., Campbell, K. L., Johnson, D. W., Stanton, T., Vesey, D. A., Coombes, J. S., Weston, K. S., Hawley, C. M., McWhinney, B. C., Ungerer, J. P., & Isbel, N. (2014). Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3-4 chronic kidney disease. Archives of medical research, 45(4), 309–317. https://doi.org/10.1016/j.arcmed.2014.04.002
Rossi, M., Johnson, D. W., Morrison, M., Pascoe, E. M., Coombes, J. S., Forbes, J. M., Szeto, C. C., McWhinney, B. C., Ungerer, J. P., & Campbell, K. L. (2016). Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clinical Journal of the American Society of Nephrology, 11(2), 223–231. https://doi.org/10.2215/CJN.05240515
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sampaio-Maia, B., Simões-Silva, L., Pestana, M., Araujo, R., & Soares-Silva, I. J. (2016). The role of the gut microbiome on chronic kidney disease. Advances in applied microbiology, 96, 65–94. https://doi.org/10.1016/bs.aambs.2016.06.002
Satoh, M., Hayashi, H., Watanabe, M., Ueda, K., Yamato, H., Yoshioka, T., & Motojima, M. (2003). Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Experimental Nephrology, 95(3), e111–e118. https://doi.org/10.1159/000074327
Schepers, E., Meert, N., Glorieux, G., Goeman, J., Van der Eycken, J., & Vanholder, R. (2007). P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrology Dialysis Transplantation, 22(2), 592–596. https://doi.org/10.1093/ndt/gfl584
Schulz, M. D., Atay, C., Heringer, J., Romrig, F. K., Schwitalla, S., Aydin, B., Ziegler, P. K., Varga, J., Reindl, W., Pommerenke, C., Salinas-Riester, G., Böck, A., Alpert, C., Blaut, M., Polson, S. C., Brandl, L., Kirchner, T., Greten, F. R., Polson, S. W., & Arkan, M. C. (2014). High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature, 514(7523), 508–512. https://doi.org/10.1038/nature13398
Schwiertz, A., Hold, G. L., Duncan, S. H., Gruhl, B., Collins, M. D., Lawson, P. A., Flint, H. J., & Blaut, M. (2002). Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Systematic and applied microbiology, 25(1), 46–51. https://doi.org/10.1078/0723-2020-00096
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60
Shimizu, H., Bolati, D., Higashiyama, Y., Nishijima, F., Shimizu, K., & Niwa, T. (2012). Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells. Life sciences, 90(13-14), 525–530. https://doi.org/10.1016/j.lfs.2012.01.013
Shimizu, H., Saito, S., Higashiyama, Y., Nishijima, F., & Niwa, T. (2013a). CREB, NF-κB, and NADPH oxidase coordinately upregulate indoxyl sulfate-induced angiotensinogen expression in proximal tubular cells. American journal of physiology. Cell physiology, 304(7), C685–C692. https://doi.org/10.1152/ajpcell.00236.2012
Shimizu, H., Yisireyili, M., Higashiyama, Y., Nishijima, F., & Niwa, T. (2013b). Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-κB and p53 in proximal tubular cells. Life sciences, 92(2), 143–148. https://doi.org/10.1016/j.lfs.2012.11.012
Shimizu, H., Yisireyili, M., Nishijima, F., & Niwa, T. (2013c). Indoxyl sulfate enhances p53-TGF-β1-Smad3 pathway in proximal tubular cells. American journal of nephrology, 37(2), 97–103. https://doi.org/10.1159/000346420
Simeoni, M., Citraro, M. L., Cerantonio, A., Deodato, F., Provenzano, M., Cianfrone, P., Capria, M., Corrado, S., Libri, E., Comi, A., Pujia, A., Abenavoli, L., Andreucci, M., Cocchi, M., Montalcini, T., & Fuiano, G. (2019). An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). European journal of nutrition, 58(5), 2145–2156. https://doi.org/10.1007/s00394-018-1785-z
Sirich, T. L., Funk, B. A., Plummer, N. S., Hostetter, T. H., & Meyer, T. W. (2014). Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. Journal of the American Society of Nephrology, 25(3), 615–622. https://doi.org/10.1681/ASN.2013060597
Songer, J. G., & Uzal, F. A. (2016). Diseases produced by Clostridium spiroforme. In F. A. Uzal, J. G. Songer, J. F. Prescott and M. R. Popoff (Ed.), Clostridial diseases of animals (pp. 221–227). Wiley-Blackwell. https://doi.org/10.1002/9781118728291.ch18
Sotnikova, T. D., Beaulieu, J. M., Espinoza, S., Masri, B., Zhang, X., Salahpour, A., Barak, L. S., Caron, M. G., & Gainetdinov, R. R. (2010). The dopamine metabolite 3-methoxytyramine is a neuromodulator. PloS one, 5(10), e13452. https://doi.org/10.1371/journal.pone.0013452
Sparkes, A. H., Caney, S., Chalhoub, S., Elliott, J., Finch, N., Gajanayake, I., Langston, C., Lefebvre, H. P., White, J., & Quimby, J. (2016). ISFM consensus guidelines on the diagnosis and management of feline chronic kidney disease. Journal of feline medicine and surgery, 18(3), 219–239. https://doi.org/10.1177/1098612X16631234
Srivastava, A., Kaze, A. D., McMullan, C. J., Isakova, T., & Waikar, S. S. (2018). Uric acid and the risks of kidney failure and death in individuals with CKD. American journal of kidney diseases, 71(3), 362. https://doi.org/10.1053/j.ajkd.2017.08.017
Stenvinkel, P., Ketteler, M., Johnson, R. J., Lindholm, B., Pecoits-Filho, R., Riella, M., Heimbürger, O., Cederholm, T., & Girndt, M. (2005). IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney international, 67(4), 1216–1233. https://doi.org/10.1111/j.1523-1755.2005.00200.x
Stevens, P. E., Levin, A., & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members (2013). Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal medicine, 158(11), 825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007
Suez, J., Zmora, N., & Elinav, E. (2020). Probiotics in the next-generation sequencing era. Gut microbes, 11(1), 77–93. https://doi.org/10.1080/19490976.2019.1586039
Sumida, K., Yamagata, K., & Kovesdy, C. P. (2019). Constipation in CKD. Kidney international reports, 5(2), 121–134. https://doi.org/10.1016/j.ekir.2019.11.002
Summers, S. C., Quimby, J. M., Isaiah, A., Suchodolski, J. S., Lunghofer, P. J., & Gustafson, D. L. (2019). The fecal microbiome and serum concentrations of indoxyl sulfate and p-cresol sulfate in cats with chronic kidney disease. Journal of veterinary internal medicine, 33(2), 662–669. https://doi.org/10.1111/jvim.15389
Sun, C. Y., Chang, S. C., & Wu, M. S. (2012). Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PloS one, 7(3), e34026. https://doi.org/10.1371/journal.pone.0034026
Sun, C. Y., Hsu, H. H., & Wu, M. S. (2013). p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrology Dialysis Transplantation, 28(1), 70–78. https://doi.org/10.1093/ndt/gfs133
Sung, J., Kim, S., Cabatbat, J. J. T., Jang, S., Jin, Y. S., Jung, G. Y., Chia, N., & Kim, P. J. (2017). Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature communications, 8, 15393. https://doi.org/10.1038/ncomms15393
Takayama, F., Taki, K., & Niwa, T. (2003). Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. American Journal of Kidney Diseases, 41(3), S142-S145. https://doi.org/10.1053/ajkd.2003.50104
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in immunology, 121, 91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England journal of medicine, 368(17), 1575–1584. https://doi.org/10.1056/NEJMoa1109400
Tao, S., Li, L., Li, L., Liu, Y., Ren, Q., Shi, M., Liu, J., Jiang, J., Ma, H., Huang, Z., Xia, Z., Pan, J., Wei, T., Wang, Y., Li, P., Lan, T., Tang, X., Zeng, X., Lei, S., Tang, H., … Fu, P. (2019). Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta diabetologica, 56(5), 581–592. https://doi.org/10.1007/s00592-019-01316-7
Thakur, K., Dhoot, V. M., Bhojne, G. R., Upadhye, S. V., & Somkuwar, A. P. (2021). Effect of probiotic on hemato-biochemical alterations in dogs with chronic kidney disease. The Pharma Innovation Journal, 10(6S): 507-513.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research, 25(24), 4876–4882. https://doi.org/10.1093/nar/25.24.4876
Tian, Y., Gou, J., Zhang, H., Lu, J., Jin, Z., Jia, S., & Bai, L. (2021). The anti-inflammatory effects of 15-HETE on osteoarthritis during treadmill exercise. Life sciences, 273, 119260. https://doi.org/10.1016/j.lfs.2021.119260
Tomlinson, J. A. P., & Wheeler, D. C. (2017). The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney international, 92(4), 809–815. https://doi.org/10.1016/j.kint.2017.03.053
Torii, T., Kanemitsu, K., Wada, T., Itoh, S., Kinugawa, K., & Hagiwara, A. (2010). Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of clinical biochemistry, 47(5), 447–452. https://doi.org/10.1258/acb.2010.010047
Tsai, M. H., Hsu, C. Y., Lin, M. Y., Yen, M. F., Chen, H. H., Chiu, Y. H., & Hwang, S. J. (2018). Incidence, prevalence, and duration of chronic kidney disease in Taiwan: Results from a community-based screening program of 106,094 Individuals. Nephron, 140(3), 175–184. https://doi.org/10.1159/000491708
Tsujimoto, M., Hatozaki, D., Shima, D., Yokota, H., Furukubo, T., Izumi, S., Yamakawa, T., Minegaki, T., & Nishiguchi, K. (2012). Influence of serum in hemodialysis patients on the expression of intestinal and hepatic transporters for the excretion of pravastatin. Therapeutic Apheresis and Dialysis, 16(6), 580–587. https://doi.org/10.1111/j.1744-9987.2012.01100.x
Tumur, Z., & Niwa, T. (2009). Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. American journal of nephrology, 29(6), 551–557. https://doi.org/10.1159/000191468
Tumur, Z., Shimizu, H., Enomoto, A., Miyazaki, H., & Niwa, T. (2010). Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. American journal of nephrology, 31(5), 435–441. https://doi.org/10.1159/000299798
Uzal, F.A., Songer, J.G., Prescott, J.F., Popoff, M.R., Songer, J.G. and Uzal, F.A. (2016). Diseases Produced by Clostridium spiroforme. In Clostridial Diseases of Animals (eds F.A. Uzal, J.G. Songer, J.F. Prescott and M.R. Popoff). https://doi.org/10.1002/9781118728291.ch18
Van Gylswyk, N. O., & Van der Toorn, J. J. T. K. (1985). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. International Journal of Systematic and Evolutionary Microbiology, 35(3), 323-326. https://doi.org/10.1099/00207713-35-3-323
Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V., & Glorieux, G. (2014). The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. Journal of the American Society of Nephrology, 25(9), 1897–1907. https://doi.org/10.1681/ASN.2013101062
Vaquero, J., Monte, M. J., Dominguez, M., Muntané, J., & Marin, J. J. (2013). Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochemical pharmacology, 86(7), 926–939. https://doi.org/10.1016/j.bcp.2013.07.022
Vaziri, N. D., Liu, S. M., Lau, W. L., Khazaeli, M., Nazertehrani, S., Farzaneh, S. H., Kieffer, D. A., Adams, S. H., & Martin, R. J. (2014). High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PloS one, 9(12), e114881. https://doi.org/10.1371/journal.pone.0114881
Vaziri, N. D., Wong, J., Pahl, M., Piceno, Y. M., Yuan, J., DeSantis, T. Z., Ni, Z., Nguyen, T. H., & Andersen, G. L. (2013). Chronic kidney disease alters intestinal microbial flora. Kidney international, 83(2), 308–315. https://doi.org/10.1038/ki.2012.345
Veiga, P., Suez, J., Derrien, M., & Elinav, E. (2020). Moving from probiotics to precision probiotics. Nature microbiology, 5(7), 878–880. https://doi.org/10.1038/s41564-020-0721-1
Velasquez, M. T., Centron, P., Barrows, I., Dwivedi, R., & Raj, D. S. (2018). Gut microbiota and cardiovascular uremic toxicities. Toxins, 10(7), 287. https://doi.org/10.3390/toxins10070287
Velázquez, O. C., Lederer, H. M., & Rombeau, J. L. (1997). Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Advances in experimental medicine and biology, 427, 123–134.
Viramontes-Hörner, D., Márquez-Sandoval, F., Martín-del-Campo, F., Vizmanos-Lamotte, B., Sandoval-Rodríguez, A., Armendáriz-Borunda, J., García-Bejarano, H., Renoirte-López, K., & García-García, G. (2015). Effect of a symbiotic gel (Lactobacillus acidophilus + Bifidobacterium lactis + inulin) on presence and severity of gastrointestinal symptoms in hemodialysis patients. Journal of renal nutrition, 25(3), 284–291. https://doi.org/10.1053/j.jrn.2014.09.008
Walter, J., Armet, A. M., Finlay, B. B., & Shanahan, F. (2020). Establishing or exaggerating causality for the gut microbiome: Lessons from human Microbiota-Associated Rodents. Cell, 180(2), 221–232. https://doi.org/10.1016/j.cell.2019.12.025
Wang, H., Ainiwaer, A., Song, Y., Qin, L., Peng, A., Bao, H., & Qin, H. (2023). Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome, 11(1), 3. https://doi.org/10.1186/s40168-022-01443-4
Wang, I. K., Wu, Y. Y., Yang, Y. F., Ting, I. W., Lin, C. C., Yen, T. H., Chen, J. H., Wang, C. H., Huang, C. C., & Lin, H. C. (2015). The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Beneficial microbes, 6(4), 423–430. https://doi.org/10.3920/BM2014.0088
Wang, I. K., Yen, T. H., Hsieh, P. S., Ho, H. H., Kuo, Y. W., Huang, Y. Y., Kuo, Y. L., Li, C. Y., Lin, H. C., & Wang, J. Y. (2021). Effect of a probiotic combination in an experimental mouse model and clinical patients with chronic kidney disease: a pilot study. Frontiers in nutrition, 8, 661794. https://doi.org/10.3389/fnut.2021.661794
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
Wang, S., Lv, D., Jiang, S., Jiang, J., Liang, M., Hou, F., & Chen, Y. (2019a). Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clinical Science, 133(17), 1857–1870. https://doi.org/10.1042/CS20190171
Wang, X. Q., Zhang, A. H., Miao, J. H., Sun, H., Yan, G. L., Wu, F. F., & Wang, X. J. (2018). Gut microbiota as important modulator of metabolism in health and disease. RSC advances, 8(74), 42380–42389. https://doi.org/10.1039/c8ra08094a
Wang, X., Hao, Y., Liu, X., Yu, S., Zhang, W., Yang, S., Yu, Z., & Ren, F. (2019b). Gut microbiota from end-stage renal disease patients disrupt gut barrier function by excessive production of phenol. Journal of genetics and genomics, 46(8), 409–412. https://doi.org/10.1016/j.jgg.2019.03.015
Wang, X., Yang, S., Li, S., Zhao, L., Hao, Y., Qin, J., Zhang, L., Zhang, C., Bian, W., Zuo, L., Gao, X., Zhu, B., Lei, X. G., Gu, Z., Cui, W., Xu, X., Li, Z., Zhu, B., Li, Y., Chen, S., … Ren, F. (2020). Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 69(12), 2131–2142. https://doi.org/10.1136/gutjnl-2019-319766.
Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63. https://doi.org/10.1038/nature09922
Watanabe, K., Fujimoto, J., Sasamoto, M., Dugersuren, J., Tumursuh, T., & Demberel, S. (2008). Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World Journal of Microbiology and Biotechnology, 24, 1313-1325. https://doi.org/10.1007/s11274-007-9604-3
Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. The lancet, 389(10075), 1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5
Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., & Wemheuer, B. (2020). Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental microbiome, 15(1), 11. https://doi.org/10.1186/s40793-020-00358-7
Wen, C. P., Cheng, T. Y., Tsai, M. K., Chang, Y. C., Chan, H. T., Tsai, S. P., Chiang, P. H., Hsu, C. C., Sung, P. K., Hsu, Y. H., & Wen, S. F. (2008). All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The lancet, 371(9631), 2173–2182. https://doi.org/10.1016/S0140-6736(08)60952-6
Wing, M. R., Patel, S. S., Ramezani, A., & Raj, D. S. (2016). Gut microbiome in chronic kidney disease. Experimental physiology, 101(4), 471–477. https://doi.org/10.1113/EP085283
Winston JA, Theriot CM. 2016. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe 41:44–50. https://doi.org/10.1016/j.anaerobe.2016.05.003.
Wong, J., Piceno, Y. M., DeSantis, T. Z., Pahl, M., Andersen, G. L., & Vaziri, N. D. (2014). Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American journal of nephrology, 39(3), 230–237. https://doi.org/10.1159/000360010
Woting, A., & Blaut, M. (2018). Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H mice. Nutrients, 10(6), 685. https://doi.org/10.3390/nu10060685
Wu, I. W., Gao, S. S., Chou, H. C., Yang, H. Y., Chang, L. C., Kuo, Y. L., Dinh, M. C. V., Chung, W. H., Yang, C. W., Lai, H. C., Hsieh, W. P., & Su, S. C. (2020a). Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics, 10(12), 5398–5411. https://doi.org/10.7150/thno.41725
Wu, I. W., Hsu, K. H., Lee, C. C., Sun, C. Y., Hsu, H. J., Tsai, C. J., Tzen, C. Y., Wang, Y. C., Lin, C. Y., & Wu, M. S. (2011). p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrology Dialysis Transplantation, 26(3), 938-947. https://doi.org/10.1093/ndt/gfq580
Wu, I. W., Lee, C. C., Hsu, H. J., Sun, C. Y., Chen, Y. C., Yang, K. J., Yang, C. W., Chung, W. H., Lai, H. C., Chang, L. C., & Su, S. C. (2020b). Compositional and functional adaptations of intestinal microbiota and related metabolites in CKD patients receiving dietary protein restriction. Nutrients, 12(9), 2799. https://doi.org/10.3390/nu12092799
Wu, W., Bush, K. T., & Nigam, S. K. (2017). Key Role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Scientific reports, 7(1), 4939. https://doi.org/10.1038/s41598-017-04949-2
Xiao, X., Zhang, J., Ji, S., Qin, C., Wu, Y., Zou, Y., Yang, J., Zhao, Y., Yang, Q., & Liu, F. (2022). Lower bile acids as an independent risk factor for renal outcomes in patients with type 2 diabetes mellitus and biopsy-proven diabetic kidney disease. Frontiers in endocrinology, 13, 1026995. https://doi.org/10.3389/fendo.2022.1026995
Xu, H., Zhao, F., Hou, Q., Huang, W., Liu, Y., Zhang, H., & Sun, Z. (2019). Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. Food & function, 10(5), 2618–2629. https://doi.org/10.1039/c9fo00087a
Xu, K. Y., Xia, G. H., Lu, J. Q., Chen, M. X., Zhen, X., Wang, S., You, C., Nie, J., Zhou, H. W., & Yin, J. (2017). Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Scientific reports, 7(1), 1445. https://doi.org/10.1038/s41598-017-01387-y
Yamada, N., Iwamoto, C., Kano, H., Yamaoka, N., Fukuuchi, T., Kaneko, K., & Asami, Y. (2016). Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides, nucleotides & nucleic acids, 35(10-12), 670–676. https://doi.org/10.1080/15257770.2015.1125000
Yamamoto, H., Tsuruoka, S., Ioka, T., Ando, H., Ito, C., Akimoto, T., Fujimura, A., Asano, Y., & Kusano, E. (2006). Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney international, 69(10), 1780–1785. https://doi.org/10.1038/sj.ki.5000340
Yang, E. J., & Chang, H. C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International journal of food microbiology, 139(1-2), 56–63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012
Yang, T., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2018). The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 14(7), 442–456. https://doi.org/10.1038/s41581-018-0018-2
Yokoyama, K., Tajima, M., Yoshida, H., Nakayama, M., Tokutome, G., Sakagami, H., & Hosoya, T. (2002). Plasma pteridine concentrations in patients with chronic renal failure. Nephrology Dialysis Transplantation, 17(6), 1032-1036. https://doi.org/10.1093/ndt/17.6.1032
Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of functional foods, 6(100), 205–214. https://doi.org/10.1016/j.jff.2013.10.008
Yoshida, N., Emoto, T., Yamashita, T., Watanabe, H., Hayashi, T., Tabata, T., Hoshi, N., Hatano, N., Ozawa, G., Sasaki, N., Mizoguchi, T., Amin, H. Z., Hirota, Y., Ogawa, W., Yamada, T., & Hirata, K. I. (2018). Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 138(22), 2486–2498. https://doi.org/10.1161/CIRCULATIONAHA.118.033714
Zhang, A., Sun, H., Yan, G., Wang, P., & Wang, X. (2015). Metabolomics for biomarker discovery: Moving to the Clinic. BioMed research international, 2015, 354671. https://doi.org/10.1155/2015/354671
Zhang, Q., Zhang, Y., Zeng, L., Chen, G., Zhang, L., Liu, M., Sheng, H., Hu, X., Su, J., Zhang, D., Lu, F., Liu, X., & Zhang, L. (2021). The role of gut microbiota and microbiota-related serum metabolites in the progression of diabetic kidney disease. Frontiers in pharmacology, 12, 757508. https://doi.org/10.3389/fphar.2021.757508
Zhao, K., He, J., Zhang, Y., Xu, Z., Xiong, H., Gong, R., Li, S., Chen, S., & He, F. (2016). Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Scientific reports, 6, 37234. https://doi.org/10.1038/srep37234
Zhou, N., Shen, Y., Fan, L., Sun, Q., Huang, C., Hao, J., Lan, J., & Yan, H. (2020). The Characteristics of intestinal-barrier damage in rats With IgA nephropathy. The American journal of the medical sciences, 359(3), 168–176. https://doi.org/10.1016/j.amjms.2019.11.011
Zhu, H., Cao, C., Wu, Z., Zhang, H., Sun, Z., Wang, M., Xu, H., Zhao, Z., Wang, Y., Pei, G., Yang, Q., Zhu, F., Yang, J., Deng, X., Hong, Y., Li, Y., Sun, J., Zhu, F., Shi, M., Qian, K., … Zeng, R. (2021). The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell metabolism, 33(10), 1926–1942.e8. https://doi.org/10.1016/j.cmet.2021.06.014
Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: diet, health and the gut microbiota. Nature reviews. Gastroenterology & hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., Kotler, E., Zur, M., Regev-Lehavi, D., Brik, R. B., Federici, S., Cohen, Y., Linevsky, R., Rothschild, D., Moor, A. E., Ben-Moshe, S., Harmelin, A., Itzkovitz, S., Maharshak, N., Shibolet, O., … Elinav, E. (2018). Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 174(6), 1388–1405.e21. https://doi.org/10.1016/j.cell.2018.08.041
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89184-
dc.description.abstract慢性腎臟病 (Chronic kidney disease, CKD) 為腎臟功能不可逆的喪失而最終演變成疾病的過程,慢性腎臟病之高發生率及高盛行率使腎臟保健成為關注議題。近年來由於多體學分析技術的發展,得以進一步窺探疾病對於腸道菌相組成之影響。慢性腎臟病造成腸道菌相失衡 (gut dysbiosis) 的現象可由臨床試驗得到實證,菌相失衡的結果導致更多腸道衍生型尿毒素(gut-derived uremic toxin, GDUT) 生成,使腎臟功能持續惡化並加劇病程發展。此結果顯示,基於調整腸道菌相,進而影響其衍生代謝物之作法將可以做為減少尿毒素物質以及延緩慢性腎臟病病程發展的有效預防及治療策略。因此,本研究目的為開發具預防或延緩慢性腎臟病病程發展之益生菌,並藉由多體學分析整合慢性腎臟病動物模式及臨床試驗之成果,以進一步探究益生菌於慢性腎臟病宿主、腸道微生物及所衍生代謝物間之交互作用,以及影響慢性腎臟病病程發展之潛在作用機轉。

首先,本研究建立體外益生菌篩選平台,篩選出可降低尿毒素前趨物之潛力菌株,其中Lactiplantibacillus plantarum subsp. plantarum MFM 30−3 及 Lacticaseibacillus paracasei subsp. paracasei MFM 18之複合菌株具有最佳之清除能力,將其命名為複合乳酸桿菌 (Lactobacillus mix, Lm),並以腺嘌呤誘發小鼠慢性腎臟病模式探討其於體內之生理功效與機制。研究結果顯示,Lm可改善慢性腎臟病所引發之腸道菌相失衡,提升腸道菌相多樣性,並回復健康個體腸道常駐菌相之豐富度。此常駐菌株大多為短鏈脂肪酸生成菌,此與Lm使腸道中丁酸含量上升以及增加醣類代謝途徑之研究成果相互呼應,短鏈脂肪酸為提供腸道上皮細胞能量的關鍵化合物,Lm可藉由調整腸道菌相組成及相關代謝物生合成進而改善腸道屏障功能。此外,Lm可降低腸道衍生型尿毒素前趨物,進而降低血液中尿毒素之濃度,透過減少毒素物質累積對腎臟組織的傷害,得以改善慢性腎臟病所引起之氧化壓力及發炎現象,降低腎臟損傷及纖維化相關蛋白質的表現,並維持腎臟組織中免疫作用的恆定,使腎臟維持較佳的功能性。研究結果顯示,Lm可作為延緩腎臟病程發展之有效預防策略,亦實證本研究開發之腎臟保健益生菌篩選平台之可行性及生理意義。

本研究更進一步與臺大醫院以及臺大動物醫院合作進行慢性腎臟病之臨床試驗,藉以評估Lm作為輔助治療策略對腎臟病指標以及降低尿毒素之效果。人體臨床試驗設計為前瞻性隨機分配開放標記盲性指標試驗 (prospective, randomized, open-labeled, blinded end-point trial, PROBE),共招募第三期慢性腎臟病患共120位,持續給予Lm或活性竹碳三個月以評估其臨床應用功效。截至目前為止,僅49位病患完成為期三個月之試驗,其餘71位個案仍在進行試驗當中。由目前試驗結果可知,相較於對照組,慢性腎臟病患者補充三個月Lm可降低血液中腸道衍生型尿毒素之濃度,而肌酸酐 (creatinine, CRE) 及血中尿素氮 (blood urea nitrogen, BUN) 亦有降低之趨勢,且腎絲球過濾率 (estimated glomerular filtration rate, eGFR) 在補充益生菌期間每月平均提升0.17 ml/min/1.732,而對照組則每月平均下降0.67 ml/min/1.732。綜合上述,Lm可有效降低血液中氧化三甲胺 (trimethylamine-N-oxide, TMAO)、硫酸吲哚酚 (indoxyl sulfate, IS)、對硫甲酚 (p-cresyl sulfate, PCS) 及硫酸苯酯 (phenyl sulfate, PS),推測Lm藉由改善菌相失衡而減少毒素累積,進而延緩腎臟功能惡化,以改善慢性腎臟病患腎絲球過濾率持續衰退之情況。

腎貓臨床試驗為開放標記單臂試驗設計之前導研究 (open-label single-arm pilot study),招募第二至三期之慢性腎臟病貓共14隻,持續給予Lm八周以評估其延緩慢性腎臟病病程之功效,並結合多體學以分析腸道總菌相 (gut microbiome)及血液總代謝物組成 (serum metabolome),以釐清Lm用以治療並延緩慢性腎臟病發展之可能機制。經過八周Lm的介入治療後,將近七成腎貓可降低或維持血中肌酸酐、尿素氮及腸道衍生型尿毒素之含量。此外,Lm顯著改善腸道菌相之多樣性,並改變腎貓特定細菌分類群、微生物功能及代謝物的比例及含量,此現象指出Lm調整腸道菌相、微生物代謝途徑及代謝物組成,而此三者之間具有密不可分的交互關係。研究中發現個別腎貓針對評估Lm延緩慢性腎臟病相關指標上存在著差異性反應,因此進一步將腎貓區分為對Lm具高反應性 (high responder, HR) 及中反應性 (moderate responder, MR),期望可更精準釐清Lm之潛在作用機制。研究發現,高及中反應性腎貓之間對於特定微生物菌種、血清代謝物及生物代謝路徑的改變存在差異。此外,腸道中兩株益生菌株的含量更影響了Lm延緩慢性腎臟病之功效。於高反應性腎貓中可更明確指出,Lm調控腸道衍生型尿毒素及短鏈脂肪酸生合成途徑相關代謝物及微生物功能性。研究中亦發現,病程發展程度不同的腎貓具有特定的微生物菌種及代謝物標的,而其與病程發展因子亦具有不同程度之關聯性。本研究識別之特定微生物菌種及代謝物標的仍待結合臨床試驗加以驗證其生理意義,期望可確立其對於病程發展之影響,未來將有潛力作為慢性腎臟病預後及診斷之判斷依據,或開發次世代或精準益生菌用於延緩慢性腎臟病之發展。

綜觀上述,多體學分析證明Lm藉由調整腸道菌相組成及相關代謝物生成,而達到改善腸道菌相失衡及降低腸道衍生型尿毒素生合成之效,可做為慢性腎臟病有效的預防及輔助治療之益生菌療法,並可預期在長期服用之下,Lm改善上述情形之效果將可更為顯著。本研究的最終目標為提供慢性腎臟病低成本且無副作用的益生菌療法,改善腎臟功能指標及緩解患者的不適反應,在維持病患生活品質為前提之下,作為腎臟保健議題的有效解決方案。
zh_TW
dc.description.abstractChronic kidney disease (CKD) is distinguished by the persistent decline of kidney function. Growing clinical evidence supports the theory that gut dysbiosis significantly contributes to deteriorating CKD progression, generating gut-derived uremic toxin (GDUT) and aggravating kidney failure. Therefore, strategies based on microbiota-based interventions could be considered preventive and therapeutic approaches to modulate gut microbiota and its metabolites to alleviate the progression of CKD. Thus, in this study, we aim to develop a probiotic mixture to prevent or alleviate CKD and further investigate its possible mechanisms via in vivo and clinical studies using multi-omics analyses.

First, we developed an in vitro probiotics screening platform based on reducing GDUT precursors. Two strains (Lactiplantibacillus plantarum subsp. plantarum MFM 30−3 and Lacticaseibacillus paracasei subsp. paracasei MFM 18) were selected due to their high clearance ability. The two strains were mixed and named Lactobacillus mix (Lm) for further animal study to verify its anti-CKD effect and the underlying mechanism through a 0.2% adenine-induced CKD mouse model. The animal study demonstrated that Lm could alleviate kidney function through reversed gut dysbiosis and further changed the abundance of commensal bacteria, especially short-chain fatty acid (SCFA) producers in the gut, leading to downregulating uremic toxins and preventing intestinal barrier disruption via modulation of metabolite production. Furthermore, Lm also significantly improved kidney function by reducing kidney injury, decreasing fibrotic-related proteins, modulating oxidative stress, downregulating proinflammatory activity, and regulating immune responses. The findings not only provided evidence that Lm could be a potential preventive approach against CKD. The novel probiotic screening platform also showed the applicable reference for selecting functional probiotics possessing the anti-CKD effect.

Next, we cooperated with National Taiwan University Hospital and National Taiwan University Veterinary Hospital to perform clinical trials to evaluate the therapeutic opportunities of Lm. A total of 120 patients with stage 3 CKD were enrolled in a prospective, randomized, open-labeled, blinded end-point (so-called PROBE) trial for 3 months to evaluate the clinical efficacy of Lm on CKD. Currently, only 49 patients have completed the 3-month study, while the remaining 71 patients are still undergoing treatments. The patients with CKD with a 3-month Lm intervention demonstrated a down-regulatory effect on GDUT compared to the control group. A decreasing trend of creatinine (CRE) and blood urea nitrogen (BUN) levels with an estimated glomerular filtration rate (eGFR) increasing rate of 0.17 per month was found after the Lm intervention. The clinical results support that Lm can effectively downregulate trimethylamine-N-oxide (TMAO), p-cresyl sulfate (PCS), indoxyl sulfate (IS), and phenyl sulfate (PS) levels in circulation, ultimately preserving renal function, as evidenced by preventing eGFR decline in patients with CKD. More analysis will be conducted after all the patients finish the study.

For the feline study, an open-label single-arm pilot study was conducted with fourteen cats with stage 2-3 CKD for 8 weeks to evaluate the effect of Lm intervention on CKD alleviation. The gut microbiome and serum metabolome were also analyzed to study the mechanisms of therapeutic impact involved in CKD alleviating effect of Lm intervention. After 8 weeks of Lm intervention, CRE and BUN of most cats with CKD were reduced or maintained. Lm also downregulated GDUTs in serum. Furthermore, Lm significantly improved intestinal diversity and changed the levels of specific bacterial taxa, microbial functions, and metabolites in cats, suggesting modulation of microbial compositions, metabolic reactions, and metabolite profiles by Lm intervention, which were strongly interconnected. We further separated the cats with CKD into Lm high responder (HR) and moderate responder (MR) to investigate the precision perspective of individual cats that showed different responses on alleviating CKD after Lm intervention. We identified the differential microbial biomarkers, serum metabolites, and KEGG level 3 pathways between HR and MR cats, and observed that the abundances of two probiotic strains in the intestinal tract affect the efficacy of Lm intervention in alleviating CKD. Furthermore, modulations of metabolites and microbial functions involved in GDUT (IS, PCS, and PS) and SCFA (acetic acid, butyric acid, and propionic acid) biosynthesis pathways were more precise among HR cats. We also discovered specific bacterial species and serum metabolites that differed between cats with stage 2 and 3 CKD, and were shown correlations with CKD progressive factors. Although the physiological significance of these specific biomarkers still requires further investigation, these biomarkers have the potential to be utilized as novel CKD prognostic/diagnostic biomarkers or developed as next-generation/precision probiotics for alleviating CKD progression.

In conclusion, multi-omics analyses demonstrated that Lm improved intestinal flora dysbiosis and downregulated harmful GDUT biosynthesis through modulation of microbial composition and metabolite production, revealing the translational potential of probiotic adjuvant therapy in CKD. A preferable alleviating effect could be expected if the patients consume a long-term Lm intervention. The final aim of this study is to provide a novel approach to improve symptoms and outcomes in patients with CKD, thereby enhancing the quality of life for this population.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:14:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:14:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iv
Table of Contents vii
List of Figures xii
List of Tables xvii
Abbreviation Table xix
Introduction 1
Chapter 1 3
1-1 Chronic kidney disease 4
1-1.1 Prevalence of chronic kidney disease in Taiwan 4
1-1.2 Classification of CKD 5
1-1.3 Prevalence and diagnosis of feline chronic kidney disease 8
1-2 Uremic toxins 10
1-2.1 Classification and origin 10
1-2.2 Gut-derived uremic toxins 13
1-3 Chronic kidney disease and gut dysbiosis 19
1-3.1 Gut microbiota in human 19
1-3.2 Gut microbiota in cats 22
1-3.3 Gut microbiota in CKD 26
1-3.4 CKD-associated gut dysbiosis in clinical studies 29
1-3.5 Causal relationship between CKD and gut dysbiosis 37
1-4 Studies on multi-omics as biomarkers for CKD 40
1-5 Potential utilization of probiotics for improvement of CKD 44
1-6 Next generation probiotics-potential therapeutic agent of diseases 56
1-7 Hypothesis 59
1-8 Aims of study 61
Chapter 2 66
2-1 Objective 67
2-2 Experimental design 68
2-3 Material and methods 69
2-3.1 Bacterial strains 69
2-3.2 Precursor of uremic toxin clearance ability of LAB 69
2-3.3 Identification of LAB 70
2-3.4 Gastrointestinal tolerance 71
2-3.5 Adenine-induced CKD animal model 71
2-3.6 Renal histopathology studies 72
2-3.7 Biochemical measurements 73
2-3.8 Indole and p-cresol analysis 73
2-3.9 Uremic toxin analysis 74
2-3.10 Short chain fatty acids analysis 74
2-3.11 Kidney antioxidative-related enzyme activity analysis 75
2-3.12 Kidney cytokines analysis 75
2-3.13 Intestinal permeability 75
2-3.14 Western blot analysis 75
2-3.15 DNA extraction, and 16S rRNA gene amplicon sequencing 76
2-3.16 Preparation of fecal microbiota suspension 77
2-3.17 Microbiota transplantation 77
2-3.18 Urinary protein analysis 77
2-3.19 Statistical analysis 78
2-4 Results 79
2-4.1 Two Lactobacillus strains with the highest clearance ability of uremic toxin precursor were selected 79
2-4.2 Pretreatment with Lm prevented the symptoms of adenine-induced renal injury in mice 86
2-4.3 Elevated oxidative stress and immunosuppression in CKD mice were partially restored by Lm treatment 90
2-4.4 Lm intervention reduced the levels of uremic toxins and their precursors 94
2-4.5 Lm intervention improved intestinal barrier integrity 96
2-4.6 Lm intervention significantly recovered gut dysbiosis and changed enriched taxa in the colonic microbiota of CKD mice 98
2-4.7 Lm intervention influenced the relative abundance of PICRUSt functional prediction of colonic microbiota in CKD mice 106
2-4.8 Transplantation of the CKD microbiota increased urinary uremic toxins levels compared to those that were transplanted with Lm-modulated CKD microbiota 109
2-5 Discussion 114
2-6 Summary 122
Chapter 3 124
3-1 Objective 125
3-2 Experimental design 126
3-3 Material and methods 127
3-3.1 Study design 127
3-3.2 Study subjects 127
3-3.3 Lm intervention 128
3-3.4 Sample collection 129
3-3.5 Assessment of clinical parameters 129
3-3.6 Quantification of microbial-derived uremic toxins 130
3-3.7 Statistical analysis 131
3-4 Results 132
3-4.1 Patients 132
3-4.2 Kidney functional indicators 132
3-4.3 Gut-derived uremic toxins analysis 133
3-4.4 Clinical parameters 134
3-5 Discussion 140
3-6 Summary 143
Chapter 4 144
4-1 Objective 145
4-2 Experimental design 146
4-3 Material and methods 147
4-3.1 Study design 147
4-3.2 Recruitment of participants 147
4-3.3 Lm intervention 148
4-3.4 Sample collection 148
4-3.5 Gut-derived uremic toxin analysis 148
4-3.6 Measurement of short-chain fatty acid 149
4-3.7 Microbiome analysis 150
4-3.8 Metabolomics analysis 151
4-3.9 Correlation analysis 152
4-3.10 Statistical analyses 153
4-4 Results 154
4-4.1 Study population 154
4-4.2 Lm decreased the levels of kidney functional indicators and GDUTs in serum 157
4-4.3 Lm intervention improved gut microbial dysbiosis and changed the population of specific bacterial species of cats with CKD 163
4-4.4 Lm intervention altered the gut microbial function 176
4-4.5 Lm intervention altered serum metabolomic profiles 182
4-4.6 The abundances of two probiotic strains in the intestinal tract affects the efficacy of Lm intervention against CKD 187
4-4.7 Microbiome-metabolome interaction associated with the severity of CKD and biomarkers correlated to CKD progression were changed by Lm 205
4-5 Discussion 224
4-6 Summary 235
Chapter 5 237
Conclusion 238
Reference 240
-
dc.language.isoen-
dc.title結合多體學探討複合乳酸桿菌應用於預防及治療慢性腎臟病之研究zh_TW
dc.titleInvestigating the preventive/therapeutic mechanisms of Lactobacillus mix in chronic kidney disease via multi-omics analysesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李雅珍;陳勁初;楊三連;楊欣洲;廖啟成;賴俊夫zh_TW
dc.contributor.oralexamcommitteeYa-Jane Lee;Chin-Chu Chen;San-Land Young;Hsin-Chou Yang;Chii-Cherng Liao;Chun-Fu Laien
dc.subject.keyword慢性腎臟病,腸道菌相失衡,腸道衍生型尿毒素,益生菌,多體學分析,zh_TW
dc.subject.keywordChronic kidney disease,Gut dysbiosis,Gut-derived uremic toxin,Probiotics,Multi-omics analyses,en
dc.relation.page266-
dc.identifier.doi10.6342/NTU202301723-
dc.rights.note未授權-
dc.date.accepted2023-07-19-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
12.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved