Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author江庭瑀zh_TW
dc.contributor.authorTing-Yu Chiangen
dc.date.accessioned2023-08-30T16:13:31Z-
dc.date.available2025-07-31-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-19-
dc.identifier.citationJ. Xu, S. L. Murphy, K. D. Kochanek, and E. Arias, "Mortality in the United States, 2021," National Center for Health Statistics, Hyattsville, MD, Report 456, December 22 2022. [Online]. Available: https://stacks.cdc.gov/view/cdc/122516
Eurostat, "Causes of death statistics," Eurostat, March 7 2023. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Causes_of_death_statistics#Major_causes_of_death_in_the_EU_in_2020
Australian Bureau of Statistics, "Causes of Death, Australia," Australian Bureau of Statistics, October 19 2021. [Online]. Available: https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2021
中華民國衛生福利部統計處, "110年死因統計年報," 2022. [Online]. Available: https://dep.mohw.gov.tw/DOS/cp-5069-71092-113.html
Y. Wurmser, "Wearables 2023," Insider Intelligence, February 24 2023. [Online]. Available: https://www.insiderintelligence.com/content/wearables-2023
Polaris Market Research, "Wearable Technology Market Share, Size, Trends, Industry Analysis Report, By Application (Consumer Electronics, Healthcare); By Region; Segment Forecast, 2022 - 2030," PM2894, December 2022. [Online]. Available: https://www.polarismarketresearch.com/industry-analysis/wearable-technology-market
Grand View Research, "Wearable Technology Market Size, Share & Trends Analysis Report By Product (Head & Eyewear, Wristwear), By Application (Consumer Electronics, Healthcare), By Region (Asia Pacific, Europe), And Segment Forecasts, 2023 - 2030," 978-1-68038-165-8, November 2022. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
G. Prieto-Avalos, N. A. Cruz-Ramos, G. Alor-Hernández, J. L. Sánchez-Cervantes, L. Rodríguez-Mazahua, and L. R. Guarneros-Nolasco, "Wearable Devices for Physical Monitoring of Heart: A Review," Biosensors, vol. 12, no. 5, p. 292, May 2 2022, doi: 10.3390/bios12050292.
Y. Jang, J.-M. Seo, S.-H. Ihm, and H. Y. Lee, "Feasibility, credence, and usefulness of out-of-office cuffless blood pressure monitoring using smartwatch: a population survey," Clinical Hypertension, vol. 29, no. 1, p. 15, June 1 2023, doi: 10.1186/s40885-023-00242-9.
D. DeMers and D. Wachs, "Physiology, Mean Arterial Pressure," in StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023.
World Health Organization, "High blood pressure - 1 in 4 men," ed, 2019.
World Health Organization, "High blood pressure - 1 in 5 women," ed, 2019.
M. R. Wofford, D. S. King, S. B. Wyatt, and D. W. Jones, "Secondary Hypertension: Detection and Management for the Primary Care Provider," (in eng), J Clin Hypertens (Greenwich), vol. 2, no. 2, pp. 124-131, Mar 2000. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11416635/.
A. Mishra, U. M, and R. URV, "Hypertension and Cold Exposure: Does Blood Pressure Increase due to Exposure to Cold? The Winter Hypertension," vol. 1, pp. 5-7, December 2018. [Online]. Available: https://www.researchgate.net/publication/330534816_Hypertension_and_Cold_Exposure_Does_Blood_Pressure_Increase_due_to_Exposure_to_Cold_The_Winter_Hypertension.
American Heart Association editorial staff. "Understanding Blood Pressure Readings." American Heart Association. https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings (accessed May 4, 2023).
C.-T. Luca et al., "Arterial Hypertension: Individual Therapeutic Approaches-From DNA Sequencing to Gender Differentiation and New Therapeutic Targets," (in eng), Pharmaceutics, vol. 13, no. 6, June 9 2021, doi: 10.3390/pharmaceutics13060856.
American Heart Association editorial staff. "Low Blood Pressure - When Blood Pressure Is Too Low." American Heart Association. https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/low-blood-pressure-when-blood-pressure-is-too-low (accessed May 4, 2023).
A. Chruścik, K. Kauter, L. Windus, and E. Whiteside, Fundamentals of Anatomy and Physiology. University of Southern Queensland (in English), 2021.
R. Klabunde, Cardiovascular Physiology Concepts, 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2011.
H. Watanabe et al., "Renin Cell Baroreceptor, a Nuclear Mechanotransducer Central for Homeostasis," Circulation Research, vol. 129, no. 2, pp. 262-276, May 18 2021, doi: 10.1161/CIRCRESAHA.120.318711.
J. E. Sharman et al., "Automated ‘oscillometric’ blood pressure measuring devices: how they work and what they measure," Journal of Human Hypertension, vol. 37, no. 2, pp. 93-100, May 30 2023, doi: 10.1038/s41371-022-00693-x.
M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, "Oscillometric Blood Pressure Estimation: Past, Present, and Future," IEEE Reviews in Biomedical Engineering, vol. 8, pp. 44-63, May 15 2015, doi: 10.1109/RBME.2015.2434215.
B. Lee, J.-H. Jeong, J. Hong, and Y.-H. Park, "Correlation analysis of human upper arm parameters to oscillometric signal in automatic blood pressure measurement," Sci Rep, vol. 12, no. 1, p. 19763, November 17 2022, doi: 10.1038/s41598-022-24264-9.
C.-H. Kuo, C.-J. Wu, H.-C. Chou, G.-T. Chen, and Y.-C. Kuo, "Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes," Journal of Healthcare Engineering, vol. 2017, p. 9128745, October 3 2017, doi: 10.1155/2017/9128745.
M. Kuwabara, K. Harada, Y. Hishiki, and K. Kario, "Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL," The Journal of Clinical Hypertension, vol. 21, no. 6, pp. 853-858, February 25 2019, doi: 10.1111/jch.13499.
M. Kuwabara, K. Harada, Y. Hishiki, T. Ohkubo, K. Kario, and Y. Imai, "Validation of a wrist-type home nocturnal blood pressure monitor in the sitting and supine position according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-9601T," The Journal of Clinical Hypertension, vol. 22, no. 6, pp. 970-978, May 24 2020, doi: 10.1111/jch.13864.
L. Beard and D. Ashton-Cleary, "Blood Pressure Measurement," in Maths, Physics and Clinical Measurement for Anaesthesia and Intensive Care, D. Ashton-Cleary and H. Ebrahim Eds. Cambridge: Cambridge University Press, 2019, ch. 11, pp. 159-173.
P. Salvi, A. Grillo, and G. Parati, "Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry," Hypertension Research, vol. 38, no. 10, pp. 646-648, July 9 2015, doi: 10.1038/hr.2015.78.
J. Park, H. S. Seok, S.-S. Kim, and H. Shin, "Photoplethysmogram Analysis and Applications: An Integrative Review," Frontiers in physiology, vol. 12, p. 808451doi: 10.3389/fphys.2021.808451.
T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable Photoplethysmographic Sensors—Past and Present," Electronics, vol. 3, no. 2, pp. 282-302, April 23 2014, doi: 10.3390/electronics3020282.
F. Riaz, M. A. Azad, J. Arshad, M. Imran, A. Hassan, and S. Rehman, "Pervasive blood pressure monitoring using Photoplethysmogram (PPG) sensor," Future Generation Computer Systems, vol. 98, pp. 120-130, 2019/09/01/ 2019, doi: 10.1016/j.future.2019.02.032.
P. C.-P. Chao, C.-C. Wu, D. H. Nguyen, B.-S. Nguyen, P.-C. Huang, and V.-H. Le, "The Machine Learnings Leading the Cuffless PPG Blood Pressure Sensors Into the Next Stage," IEEE Sensors Journal, vol. 21, no. 11, pp. 12498-12510, April 16 2021, doi: 10.1109/JSEN.2021.3073850.
Y.-H. Kao, P. C.-P. Chao, and C.-L. Wey, "Design and Validation of a New PPG Module to Acquire High-Quality Physiological Signals for High-Accuracy Biomedical Sensing," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 1, pp. 1-10, September 23 2019, doi: 10.1109/JSTQE.2018.2871604.
D. Grady, K. Bechtel, J. Corso, and C. Dunn, "Intra-Subject Blood Pressure Tracking Using an Innovative Cuffless Laser-Based Technology," Rockley Photonics Holdings Ltd. White Paper, Online, white paper October 19 2022. [Online]. Available: https://rockleyphotonics.com/wp-content/uploads/2022/10/Rockley-Photonics-Intra-Subject-Blood-Pressure-Tracking-Cuffless-Laser-Based-Technology.pdf
E. W.-Y. Kwong, H. Wu, and G. K.-H. Pang, "A prediction model of blood pressure for telemedicine," Health Informatics Journal, vol. 24, no. 3, pp. 227-244, 2018, doi: 10.1177/1460458216663025.
Samsung, "User manual for Galaxy Watch5 Pro / Galaxy Watch5," Mar 21 2023. [Online]. Available: https://downloadcenter.samsung.com/content/UM/202303/20230321154444620/SM-R90X_R91X_R92X_UM_EU_Android_Eng_Rev.2.0_230203.pdf
A. A. Kamshilin et al., "A new look at the essence of the imaging photoplethysmography," (in eng), Sci Rep, vol. 5, p. 10494, May 21 2015, doi: 10.1038/srep10494.
K. Welykholowa et al., "Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension," Journal of Clinical Medicine, vol. 9, no. 4, p. 1203, April 22 2020, doi: 10.3390/jcm9041203.
張惠婷, "利用結構光投影法實現非接觸式橈動脈表面振動測量及連續血壓監測," 碩士, 工程科學及海洋工程學研究所, 國立臺灣大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/mdjmwy
丁炤元, "評估相位移法和傅立葉轉換法應用於結構光投影法進行橈動脈振動量測及連續血壓監測之初步研究," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/suwt63
陳冠融, "以非接觸光學法量測血液流速並估算平均動脈壓," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/78deec
高育晟, "以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/3axw27
吳鐘晏, "結合人臉辨識系統與遞迴神經網路處理成像式光體積描記訊號," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/b5te5h
吳宇倫, "以影像-光體積描記訊號評估血壓脈衝傳遞時間," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/75933w
E. O’Brien et al., "The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems," Journal of hypertension, vol. 8 7, pp. 607-19, July 1 1990, doi: 10.1097/00004872-199007000-00004.
Standards Committee of the IEEE Engineering in Medicine and Biology Society, "IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices - Amendment 1," IEEE Std 1708a-2019 (Amendment to IEEE Std 1708-2014), pp. 1-35, October 4 2019, doi: 10.1109/IEEESTD.2019.8859685.
T. R. Macaulay et al., "Validation of an Automated and Adjustable Blood Pressure System for Use with a Public Health Station," (in eng), Vasc Health Risk Manag, vol. 16, pp. 133-142, April 9 2020, doi: 10.2147/vhrm.S246401.
B. A. Friedman, B. S. Alpert, D. Osborn, L. M. Prisant, D. E. Quinn, and J. Seller, "Assessment of the validation of blood pressure monitors: a statistical reappraisal," Blood Pressure Monitoring, vol. 13, no. 4, pp. 187-191, August 2008, doi: 10.1097/MBP.0b013e3283071a64.
IEEE Engineering in Medicine and Biology Society, "IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices," IEEE Std 1708-2014, pp. 1-38, August 26 2014, doi: 10.1109/IEEESTD.2014.6882122.
F. M. White, Fluid Mechanics, 7th ed. New York: McGraw-Hill, 2011.
W.-L. Chen, Y.-H. Lin, C.-D. Kan, F.-M. Yu, and C.-H. Lin, "Assessment of flow instabilities in in-vitro stenotic arteriovenous grafts using an equivalent astable multivibrator," IET Science, Measurement & Technology, vol. 9, no. 6, pp. 709-716, 2015, doi: 10.1049/iet-smt.2014.0264.
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, "Heart Rate Variability," Circulation, vol. 93, no. 5, pp. 1043-1065, March 1 1996, doi: 10.1161/01.CIR.93.5.1043.
M. D. Stephenson, A. G. Thompson, J. J. Merrigan, J. D. Stone, and J. A. Hagen, "Applying Heart Rate Variability to Monitor Health and Performance in Tactical Personnel: A Narrative Review," International Journal of Environmental Research and Public Health, vol. 18, no. 15, p. 8143, July 31 2021, doi: 10.3390/ijerph18158143.
D. E. Vigo, L. N. Siri, and D. P. Cardinali, "Heart Rate Variability: A Tool to Explore Autonomic Nervous System Activity in Health and Disease," in Psychiatry and Neuroscience Update : From Translational Research to a Humanistic Approach - Volume III, P. Á. Gargiulo and H. L. Mesones Arroyo Eds. Cham: Springer International Publishing, 2019, pp. 113-126.
T.-Y. Chiang et al., "Continuous blood pressure monitoring from an autonomic nervous system perspective," in SPIE BiOS, San Francisco, California, United States, 2023, vol. 12375: SPIE, p. 12, doi: 10.1117/12.2647821. [Online]. Available: https://doi.org/10.1117/12.2647821
J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, "The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors," International Journal of Cardiology, vol. 141, no. 2, pp. 122-131, May 28 2010, doi: 10.1016/j.ijcard.2009.09.543.
J. Lee et al., "Validation of normalized pulse volume in the outer ear as a simple measure of sympathetic activity using warm and cold pressor tests: towards applications in ambulatory monitoring," Physiological Measurement, vol. 34, no. 3, p. 359, February 26 2013, doi: 10.1088/0967-3334/34/3/359.
X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang, "Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation," Sci Rep, vol. 7, no. 1, p. 11554, September 14 2017, doi: 10.1038/s41598-017-11507-3.
D. H. Nguyen, P. C.-P. Chao, H.-H. Shuai, Y.-W. Fang, and B. S. Lin, "Achieving High Accuracy in Predicting Blood Flow Volume at the Arteriovenous Fistulas of Hemodialysis Patients by Intelligent Quality Assessment on PPGs," IEEE Sensors Journal, vol. 22, no. 6, pp. 5844-5856, March 15 2022, doi: 10.1109/JSEN.2022.3148415.
J. Přibil, A. Přibilová, and I. Frollo, "First-Step PPG Signal Analysis for Evaluation of Stress Induced during Scanning in the Open-Air MRI Device," Sensors, vol. 20, no. 12, p. 3532, June 22 2020, doi: 10.3390/s20123532.
J. U. Kim, Y. J. Lee, J. Lee, and J. Y. Kim, "Differences in the Properties of the Radial Artery between Cun, Guan, Chi, and Nearby Segments Using Ultrasonographic Imaging: A Pilot Study on Arterial Depth, Diameter, and Blood Flow," Evidence-Based Complementary and Alternative Medicine, vol. 2015, p. 381634, February 11 2015, doi: 10.1155/2015/381634.
S.-W. Min et al., "Effect of bevel direction on the success rate of ultrasound-guided radial arterial catheterization," BMC Anesthesiology, vol. 16, no. 1, p. 34, 11 July 2016, doi: 10.1186/s12871-016-0202-5.
Q. Xiao, D. Xu, and S. Zhuang, "Effect of wrist dorsiflexion on ultrasound-guided radial artery catheterisation using dynamic needle tip positioning technique in adult patients: a randomised controlled clinical trial," (in eng), Emerg Med J, vol. 38, no. 7, pp. 524-528, January 26 2021, doi: 10.1136/emermed-2020-209504.
J.-G. Shim et al., "Application of the dynamic needle tip positioning method for ultrasound-guided arterial catheterization in elderly patients: A randomized controlled trial," PLOS ONE, vol. 17, no. 8, p. e0273563, August 26 2022, doi: 10.1371/journal.pone.0273563.
S. Han, D. Roh, J. Park, and H. Shin, "Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography," Sensors, vol. 19, no. 24, p. 5441, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/24/5441.
K. W. Calabro, "Modeling Biological Tissues in LightTools," Synopsys Technical paper, Online, Technical paper 2020.
W. B. Gratzer and N. Kollias. Tabulated Molar Extinction Coefficient for Hemoglobin in Water [Online] Available: https://omlc.org/spectra/hemoglobin/summary.html
D. J. Segelstein, "The complex refractive index of water," Master Master, University of Missouri-Kansas City, Missouri, 1981. [Online]. Available: http://hdl.handle.net/10355/11599
T. Sarna, R. C. Sealy, P. R. Crippa, V. Cristofoletti, and N. Romeob. Extinction Coefficient of Melanin [Online] Available: https://omlc.org/spectra/melanin/eumelanin.html
CASIO. "User' Guide: Wearing the Watch." CASIO COMPUTER CO., LTD. https://support.casio.com/global/en/wsd/manual/wsd-f21hr_en/BIAJSYxuyuewxv.html (accessed.
J. Roux, M. A. Kohn, J. Sinskey, H. Nguyen, M. Boor, and K. Rouine-Rapp, "The ulnar artery: A site suitable for arterial cannulation in pediatric patients," Pediatric Anesthesia, vol. 31, no. 12, pp. 1357-1363, October 13 2021, doi: 10.1111/pan.14311.
X. Bi, Q. Wang, D. Liu, Q. Gan, and L. Liu, "Is the Complication Rate of Ulnar and Radial Approaches for Coronary Artery Intervention the Same?," (in eng), Angiology, vol. 68, no. 10, pp. 919-925, Apr 7 2017, doi: 10.1177/0003319717703226.
E. C. d. O. Guirro, G. d. P. M. F. Leite, A. V. Dibai-Filho, N. C. d. S. Borges, and R. R. d. J. Guirro, "Intra- and Inter-rater Reliability of Peripheral Arterial Blood Flow Velocity by Means of Doppler Ultrasound," Journal of Manipulative and Physiological Therapeutics, vol. 40, no. 4, pp. 236-240, May 9 2017, doi: 10.1016/j.jmpt.2017.02.007.
L.-j. Liu, H.-m. Zhou, H.-l. Tang, and Q.-h. Zhou, "Evaluation of radial and ulnar artery blood flow after radial artery decannulation using colour Doppler ultrasound," BMC Anesthesiology, vol. 21, no. 1, p. 312, December 10 2021, doi: 10.1186/s12871-021-01538-9.
F. WANG et al., "Flexible Doppler ultrasound device for the monitoring of blood flow velocity," Science Advances, vol. 7, no. 44, p. eabi9283, October 27 2021, doi: 10.1126/sciadv.abi9283.
F. M. Benslimane, M. Alser, Z. Z. Zakaria, A. Sharma, H. A. Abdelrahman, and H. C. Yalcin, "Adaptation of a Mice Doppler Echocardiography Platform to Measure Cardiac Flow Velocities for Embryonic Chicken and Adult Zebrafish," (in English), Frontiers in Bioengineering and Biotechnology, Methods vol. 7, May 14 2019, doi: 10.3389/fbioe.2019.00096.
H. Anton, I. C. Bivens, and S. Davis, Calculus, 10th Edition. Wiley, 2012.
M. W. K. Fong, E. Y. K. Ng, K. E. Z. Jian, and T. J. Hong, "SVR ensemble-based continuous blood pressure prediction using multi-channel photoplethysmogram," Computers in Biology and Medicine, vol. 113, p. 103392, August 19 2019, doi: 10.1016/j.compbiomed.2019.103392.
A. Kalra, "Decoding the Bland–Altman plot: Basic review," Journal of the Practice of Cardiovascular Sciences, vol. 3, no. 1, pp. 36 - 38, July 17 2017, doi: 10.4103/jpcs.jpcs_11_17.
O. Gerke, "Reporting Standards for a Bland–Altman Agreement Analysis: A Review of Methodological Reviews," Diagnostics, vol. 10, no. 5, p. 334, May 22 2020, doi: 10.3390/diagnostics10050334.
P. S. Myles and J. Cui, "Using the Bland–Altman method to measure agreement with repeated measures," British Journal of Anaesthesia, vol. 99, no. 3, pp. 309-311, September 1 2007, doi: 10.1093/bja/aem214.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89182-
dc.description.abstract長期血壓過高容易導致心血管疾病的發生,而心血管疾病在近年皆位居十大死因之冠,因此隨時量測血壓能及早預防因高血壓而衍生的併發症。然而,目前常見的血壓計多為基於振盪法的加壓式血壓計,若要連續監測血壓,反覆地以袖帶施加壓力於手臂或手腕上會讓受試者感到不適,進而促成以光學方法估計血壓之研究。近年來,越來越多人有配戴智慧手錶或智慧手環的習慣,穿戴裝置的開發商也注意到居家個人照護的商機,因此利用穿戴裝置評估血管健康度將會是未來的趨勢。
本研究考量平均動脈壓能反映血液是否有足夠的動力推動至各大器官與末梢血管,因此將平均動脈壓作為量測目標,而本研究所使用的平均動脈壓模型由下列三個面向所構成。首先,根據納維-斯托克斯方程建立血流量與壓力間的關係式。接著,考量自律神經系統能透過人類體內的壓力受器偵測與調節平均動脈壓的狀態,且因心率變異性指標能反映自律神經系統的平衡狀態,故將心率變異性指標作為平均動脈壓模型的參數。最後,結合光體積變化描記圖法(photoplethysmography, PPG)之理論,得到平均動脈壓之迴歸模型。
本研究希望未來能將平均動脈壓的量測裝置結合智慧手錶,因此將量測位置設定在手腕處。此外,本研究希望自製的PPG量測裝置不僅能收取皮膚表層之微血管資訊,還能取得橈動脈周遭組織的資訊,故在設計量測系統時,考量近紅外光在組織中所能傳遞的距離較遠,且波段為940 nm之近紅外光受不同膚色的影響最小,因此選用該波段作為PPG量測裝置的光源。同時,本研究測試單顆發光二極體(light-emitting diode, LED)、四顆LEDs與分別搭配平凸透鏡後的光源系統,由影像式的光強度分布可知,四顆LEDs搭配平凸透鏡的系統能有效提升照明區域中的最大照度與均勻度。最後,本研究利用四顆LEDs、平凸透鏡與光電二極體建立PPG量測裝置。
在驗證實驗中,本研究以超聲波探頭取得血液流速資訊,同時以PPG量測裝置取得PPG訊號,經數學運算後,PPG訊號與平均血容量具有一致性,因此本研究利用PPG訊號取得血容量資訊,而統計結果顯示,以PPG訊號估計心率變異性指標具有可行性。根據血壓量測試驗的結果,在建立平均動脈壓之迴歸模型時,應考量群體受試者的數據並建立總體模型,因為單一受試者在無劇烈運動時,其平均動脈壓不會有大幅度的變動,導致個別模型的預測結果容易趨向同一數值,當受試者的平均動脈壓突然上升或下降時,會有誤差較大的狀況產生。本研究自製的量測系統與總體模型,在評估四位受試者的連續平均動脈壓時,實現了連續血壓監測。
綜觀而言,本研究成功提出一個得以連續監測平均動脈壓之量測系統,其同時考量了物理基礎、生理調節機制與光學原理,並將量測裝置製成探頭的型式,達到在不搭配其他儀器的條件下,以單點式PPG量測方法收取生理訊號,並使用PPG訊號取得平均血容量與心率變異性指標,進而持續估算平均動脈壓。
zh_TW
dc.description.abstractLong-term hypertension easily leads to cardiovascular disease, and cardiovascular disease has ranked among the top ten causes of death in recent years. Therefore, measuring blood pressure at any time can prevent complications derived from hypertension as early as possible. However, the current common devices for blood pressure measurement are oscillometric method sphygmomanometers. When continuously measuring blood pressure, the subject may feel uncomfortable due to the external force from the cuff repeatedly applied on the arm or wrist. Then, the fact contributes to the study of estimating blood pressure by optical method. Recently, more and more people have the habit of wearing smart watches or smart bracelets. Developers of wearable devices have also noticed the business opportunities of personal care at home. Therefore, using wearable devices to evaluate vascular health will be a future trend.
This study considered that the mean arterial pressure (MAP) can reflect whether the blood has enough power to be transmitted to all organs and peripheral blood vessels, so the MAP was viewed as the measurement target. The three aspects of the mean arterial pressure model that was employed in this study are covered individually below. First, the relationship between blood flow and pressure drop was established according to Navier-Stokes equations. Next, considering that the autonomic nervous system (ANS) can detect and regulate the state of MAP through the baroreceptors in the human body, and the heart rate variability (HRV) indices are regarded as the parameters in MAP model because the HRV indices can reflect the balance of the ANS. Finally, the above derivation results were combined with the theory of photoplethysmography (PPG) to obtain the regression model of MAP.
Since the MAP measurement device may be merged in smart watches as wearable healthy instrument, the measurement position was set in the wrist. Thus, PPG measurement device has been designed and used to receive the information including both capillaries in the skin surface and the tissue around the radial artery. Considering that the penetration depth of near infrared in the human tissue is deeper than other region spectrum, and that the absorption coefficient of 940 nm wavelength light has the least difference between different skin tone than other spectrum, the 940 nm wavelength light was selected as the light source of PPG measurement device in this study. Meanwhile, we tested four different light source system: (1) a 940 nm wavelength light-emitting diode (LED), (2) four LEDs, (3) a LED with a plano-convex lens, and (4) four LEDs with a plano-convex lens. According to the light intensity distribution by charge-coupled device, the system including four LEDs and a plano-convex lens can effectively improve the maximum illuminance and uniformity in the lighting area. Therefore, the PPG measurement device, consists of four LEDs, integrated with a convex lens and a photodiode was applied.
For further validation, the blood flow information was collected by an ultrasound probe, simultaneously compared to the PPG signals. After mathematical operations, the PPG signals and mean blood volume were consistent, so that the PPG signals were viewed as blood volume in the regression model, and that the HRV indices were estimated from PPG signals were feasible. From the results of blood pressure measurement experiment, the MAP of each subject without intense exercise did not fluctuate significantly, which caused that the prediction using individual model easily tended to the same value. In other words, when the MAP of the subjects rose or fell suddenly, there was a large error in the prediction of individual models. Therefore, the regression model should consider the data from the group subjects and establish a general model to predict MAP. In the continuous blood pressure monitoring experiment, it was confirmed that the measurement system and the general model of this study can evaluate the continuous MAP of multiple subjects.
In short, this study successfully proposed a measurement system for continuous monitoring of MAP, which simultaneously considered the physical basis, physiological regulation mechanism, and optical principles. At the same time, the measurement device was made into a probe type, so that the single-point PPG measurement method can be used to collect vital signals without other instruments. Finally, the mean blood volume and the HRV indices were calculated from PPG signals in order to continuously estimate the MAP.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:13:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:13:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 viii
圖目錄 x
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.2.1 血壓相關疾病 4
1.2.2 平均動脈壓之調節機制 6
1.2.3 血壓量測與估計方法 10
1.2.4 穿戴式血壓計之國際標準 15
1.3 研究目的 18
1.4 論文架構 19
第2章 研究原理與方法 20
2.1 基於血液動力學的血壓模型 20
2.2 以生理調節機制之觀點建立平均動脈壓模型 26
2.3 以光體積變化描記圖法估計平均動脈壓 29
第3章 實驗架構設計與流程 33
3.1 光源波段選擇 33
3.2 量測位置選定 37
3.3 量測裝置設計 38
3.4 驗證實驗架構 41
3.5 血壓量測試驗架構 46
第4章 驗證實驗與分析結果 48
4.1 數據蒐集 48
4.2 訊號預處理 48
4.2.1 光體積變化描記圖 48
4.2.2 血流速資訊 50
4.3 建立平均血容量與光體積變化描記圖之關係 51
4.4 心率變異性驗證結果 54
第5章 血壓量測試驗與分析結果 57
5.1 數據蒐集 57
5.2 單一平均動脈壓數值監測結果 58
5.2.1 定義特徵間距 58
5.2.2 個別模型分析結果 63
5.2.3 總體模型分析結果 65
5.3 連續平均動脈壓監測結果 67
5.3.1 個別模型測試結果 67
5.3.2 總體模型測試結果 69
5.4 平均動脈壓量測結果討論 71
第6章 結論與未來展望 73
6.1 結論 73
6.2 未來展望 74
參考文獻 75
-
dc.language.isozh_TW-
dc.subject平均動脈壓zh_TW
dc.subject納維-斯托克斯方程zh_TW
dc.subject自律神經系統zh_TW
dc.subject光體積變化描記圖法zh_TW
dc.subject連續監測zh_TW
dc.subjectautonomic nervous system (ANS)en
dc.subjectNavier-Stokes equationsen
dc.subjectphotoplethysmography (PPG)en
dc.subjectmean arterial pressure (MAP)en
dc.subjectcontinuous monitoringen
dc.title以納維-斯托克斯方程與非侵入式光學方法連續監測平均動脈壓zh_TW
dc.titleContinuous Mean Arterial Pressure Monitoring Using Navier-Stokes equations and Non-invasive Optical Methoden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林啟萬;黃君偉;李翔傑;李舒昇zh_TW
dc.contributor.oralexamcommitteeChii-Wann Lin;Jiun-Woei Huang;Hsiang-Chieh Lee;Shu-sheng Leeen
dc.subject.keyword平均動脈壓,自律神經系統,納維-斯托克斯方程,光體積變化描記圖法,連續監測,zh_TW
dc.subject.keywordmean arterial pressure (MAP),autonomic nervous system (ANS),Navier-Stokes equations,photoplethysmography (PPG),continuous monitoring,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202301751-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved