請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王建凱 | zh_TW |
| dc.contributor.advisor | Chien-Kai Wang | en |
| dc.contributor.author | 蔡汶憲 | zh_TW |
| dc.contributor.author | Wen-Hsien Tsai | en |
| dc.date.accessioned | 2023-08-30T16:12:44Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-30 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-17 | - |
| dc.identifier.citation | P. H. Geubelle and J. S. Baylor, “Impact-induced delamination of composites: a 2D simulation,” Composites Part B: Engineering, vol. 29, no. 5, pp. 589-602, 1998.
K. Y. Volokh, “Comparison between cohesive zone models,” Communications in Numerical Methods in Engineering, vol. 20, no. 11, pp. 845-856, 2004, doi: 10.1002/cnm.717. J. A. Gohl, T. C. Thiele-Sardina, M. L. Rencheck, K. A. Erk, and C. S. Davis, “A Modular Peel Fixture for Tape Peel Tests on Immovable Substrates,” Experimental Mechanics, vol. 61, no. 7, pp. 1209-1213, 2021, doi: 10.1007/s11340-021-00738-1. M. H. b. Takayuki Kusaka a, Yiu-Wing Mai c, Tomoaki Kurokawa d, Taketoshi Nojima e, Shojiro Ochiai b, “Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates,” Composites Science and Technology,, vol. 58, no. 3–4, pp. 591-602,, 1998. U. Stigh and A. Biel, “Effects of strain rate on the cohesive properties and fracture process of a pressure sensitive adhesive,” Engineering Fracture Mechanics, vol. 203, pp. 266-275, 2018, doi: 10.1016/j.engfracmech.2018.07.011. T. Carlberger, A. Biel, and U. Stigh, “Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive,” International Journal of Fracture, vol. 155, no. 2, pp. 155-166, 2009, doi: 10.1007/s10704-009-9337-4. H. Chai, “The effects of bond thickness, rate and temperature on the deformation and fracture of structural adhesives under shear loading,” International Journal of Fracture, vol. 130, pp. 497–515, 2004. S. Abdel-Monsef, J. Renart, L. Carreras, P. Maimí, and A. Turon, “Environmental effects on the cohesive laws of the composite bonded joints,” Composites Part A: Applied Science and Manufacturing, vol. 155, 2022, doi: 10.1016/j.compositesa.2021.106798. S.-Y. Park and H.-Y. Jeong, “Determination of cohesive zone model parameters for tape delamination based on tests and finite element simulations,” Journal of Mechanical Science and Technology, vol. 36, no. 11, pp. 5657-5666, 2022, doi: 10.1007/s12206-022-1028-3. L. Škec, G. Alfano, and G. Jelenić, “On Gc, Jc and the characterisation of the mode-I fracture resistance in delamination or adhesive debonding,” International Journal of Solids and Structures, vol. 144-145, pp. 100-122, 2018, doi: 10.1016/j.ijsolstr.2018.04.020. M. Moslemi and M. Khoshravan, “Cohesive Zone Parameters Selection for Mode-I Prediction of Interfacial Delamination,” Strojniški vestnik – Journal of Mechanical Engineering, vol. 61, no. 9, pp. 507-516, 2015, doi: 10.5545/sv-jme.2015.2521. J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Experimental Mechanics, vol. 55, no. 6, pp. 1105-1122, 2015, doi: 10.1007/s11340-015-0009-1. S. Hong, H. B. Chew, and K.-S. Kim, “Cohesive-zone laws for void growth — I. Experimental field projection of crack-tip crazing in glassy polymers,” Journal of the Mechanics and Physics of Solids, vol. 57, no. 8, pp. 1357-1373, 2009, doi: 10.1016/j.jmps.2009.04.003. H. B. Chew, S. Hong, and K.-S. Kim, “Cohesive zone laws for void growth — II. Numerical field projection of elasto-plastic fracture processes with vapor pressure,” Journal of the Mechanics and Physics of Solids, vol. 57, no. 8, pp. 1374-1390, 2009, doi: 10.1016/j.jmps.2009.04.001. A. B. Ulf Stigh, Daniel Svensson, “Cohesive zone modelling and the fracture process of structural tape,” Procedia Structural Integrity, vol. 2, pp. 235-244, 2016. G. V. M. Costa, R. Créac’hcadec, L.F.M. da Silva, R.D.S.G. Campilho, “A cohesive zone element for mode I modelling of adhesives degraded by humidity and fatigue,” International Journal of Fatigue, vol. 112, pp. 173-182, 2018. A. U. Manual, “Abaqus user manual,” Abacus, 2020. P. P. C. a. C. G. Dávila†, “Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” NASA Center for AeroSpace Information, 2002. B. Pan, H. Xie, and Z. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Applied Optics, vol. 49, no. 28, pp. 5501-5509, 2010. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites1, 2007. T. Beléndez, C. Neipp, and A. Beléndez, “Large and small deflections of a cantilever beam,” European Journal of Physics, vol. 23, no. 3, pp. 371-379, 2002, doi: 10.1088/0143-0807/23/3/317. L. Chen, “An integral approach for large deflection cantilever beams,” International Journal of Non-Linear Mechanics, vol. 45, no. 3, pp. 301-305, 2010, doi: 10.1016/j.ijnonlinmec.2009.12.004. J. Blaber, “Ncorr Instruction Manual,” 0613 2017. F. Sur, B. Blaysat, and M. Grédiac, “Rendering Deformed Speckle Images with a Boolean Model,” Journal of Mathematical Imaging and Vision, vol. 60, no. 5, pp. 634-650, 2017, doi: 10.1007/s10851-017-0779-4. S. a. G. Timoshenko, J.N., Theory of Elasticity, 2 ed. New York.: McGraw-Hill, 1951. F. Di Caprio, S. Saputo, and A. Sellitto, “Numerical-Experimental Correlation of Interlaminar Damage Growth in Composite Structures: Setting Cohesive Zone Model Parameters,” Advances in Materials Science and Engineering, vol. 2019, pp. 1-16, 2019, doi: 10.1155/2019/2150921. A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, “An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models,” Engineering Fracture Mechanics, vol. 74, no. 10, pp. 1665-1682, 2007, doi: 10.1016/j.engfracmech.2006.08.025. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89179 | - |
| dc.description.abstract | 膠材在工業產品上使用非常廣泛,尤以膠材的內聚力模型力學性質重要。本文以雙懸臂樑實驗為主軸,設定膠帶內聚模模型種類為雙線性,使用尤拉–白努力樑理論推導出雙懸臂樑模型受膠材內聚力所影響的控制方程式,結合數位影像關聯法量測懸臂樑位移場,並通過設定與實驗環境相同的設定,求解控制方程式獲取懸臂樑的位移響應,再以數值方法求解出膠材的內聚力模型,是以與實驗量測的懸臂樑位移場比較,擬合最符合的內聚力模型參數,最後再以有限元素法模擬雙懸臂樑實驗結果,藉由比較實驗、理論以及模擬的結果確認雙線性內聚力模型的正確性。
論文內容:第一章回顧內聚力模型的發展背景與相關的研究文獻,同時也將介紹本文所開發的技術;第二章將說明在尤拉白努力樑理論下推導雙懸臂樑模型,受集中力與內聚力模型牽引力時的控制方程式,同時將介紹數位影像關聯法的理論,以及有限元素法內聚力模型元素的建模理論;第三章我們將說明如何在MATLAB中求解雙懸臂樑控制方程式,同時也會介紹如何進行雙懸臂樑實驗,此外將一併說明數位影像關聯法軟體的操作方式,以及有限元素法的建模方式;第四章將呈現雙懸臂樑控制方程式求解的結果,與內聚力模型擬合的結果,以及使用有限元素法模擬的結果,然後再將實驗、理論以及模擬進行比較討論;第五章為本論文的結論以及未來展望。 | zh_TW |
| dc.description.abstract | Adhesive materials are extensively used in electronic products, making the understanding of their cohesive properties, particularly in a mechanical sense, crucial. This paper focuses on the double cantilever beam experiment, proposes a bilinear model for the cohesive force within the adhesive, and utilizes the Euler–Bernoulli beam theory to derive a governing equation that encapsulates the influence of the cohesive force. By using the digital image correlation method to measure the displacement field of the cantilever beam, and by solving the equation under parameters replicating the experimental environment, we obtain the displacement response of the cantilever beam. The adhesive's cohesive force model is subsequently calculated using numerical methods and compared to the experimental displacement field measurements to identify the most fitting parameters. Finally, the results of the double cantilever beam experiment are simulated using the finite element method, and by comparing these results with both the theoretical and experimental outcomes, we confirm the validity of the bilinear cohesive force model.
Paper content: Chapter 1 provides a literature review on the development and background of the cohesive force model, as well as an introduction to the methods employed in this study. Chapter 2 details the derivation of the double cantilever beam model's governing equation under the Euler-Bernoulli beam theory when influenced by a concentrated force and the cohesive force model, it also introduces the digital image correlation method and the modeling theory of cohesive force in finite element analysis. Chapter 3 explains how to solve the governing equation of the double cantilever beam in MATLAB, and how to conduct the beam experiment, in addition to explaining how to use digital image correlation software and the finite element method for modeling. Chapter 4 presents the results from solving the double cantilever beam equation, the outcomes from fitting the cohesive force model, and the results from finite element simulations, and also discusses the comparisons made between these results and the experimental data. Chapter 5 concludes the paper and outlines future research directions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:12:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-30T16:12:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究方法 3 1.4 研究內容 4 第二章 內聚力模型解析方法 5 2.1 雙懸臂樑模型解析內聚力模型 5 2.2 雙懸臂樑模型理論推導 6 2.3 有限元素法內聚力模型介紹 9 2.3.1 基於牽引力分離有限元素法 11 2.3.2 非線性有限元素法 12 2.3.3 元素破壞模型 13 2.4 數位影像關聯法 15 第三章 內聚力模型解析實作 19 3.1 雙懸臂樑模型實驗 19 3.2 非線性常微分方程式解析方法 23 3.2.1 線彈性懸臂樑在自由端受垂直集中負載 23 3.2.2 線彈性懸臂樑受均布負載與自由端受垂直集中負載 25 3.2.3 雙懸臂樑受內聚力模型牽引力與自由端受垂直集中負載 28 3.3 有限元素法模擬操作實作 29 3.3.1 基於連續體的建模 30 3.3.2 基於牽引力分離的建模 33 3.4 數位影像關聯法實作 35 3.4.1 平衡平滑法 39 3.4.2 垂直位移模型數位影像關聯法解析 42 3.4.3 線彈性懸臂樑受集中負載數位影像關聯法解析 46 第四章 內聚力模型分析、量測與模擬 49 4.1 內聚力模型分析結果 49 4.1.1 內聚力雙懸臂樑臨界負載 56 4.1.2 內聚力模型擬合 59 4.2 內聚力模型量測結果 68 4.2.1 三點彎矩 68 4.2.2 雙懸臂樑模型位移曲線修正 70 4.2.3 C-06擬合結果 72 4.2.4 C-09擬合結果 75 4.3 內聚力模型模擬結果 77 4.3.1 C-06模擬結果 80 4.3.2 C-09模擬結果 81 4.4 結果與討論 82 第五章 結論與未來展望 87 5.1 結論 87 5.2 未來展望 87 參考文獻 88 附錄 91 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 膠體內聚力模型 | zh_TW |
| dc.subject | 雙懸臂樑模型 | zh_TW |
| dc.subject | 膠帶 | zh_TW |
| dc.subject | 數位影像關聯法 | zh_TW |
| dc.subject | 有限元素法模擬 | zh_TW |
| dc.subject | 數值方法 | zh_TW |
| dc.subject | Numerical Fitting | en |
| dc.subject | Finite Element Method Simulation | en |
| dc.subject | Adhesive Tape | en |
| dc.subject | Double Cantilever Beam Model | en |
| dc.subject | Adhesive Cohesive Model | en |
| dc.subject | Digital Image Correlation Method | en |
| dc.title | 層膠材料於第一模式剝離內聚力強度之實驗量測和理論分析研究 | zh_TW |
| dc.title | Characterization of Cohesive Strength for Mode-I Interlaminar Adhesive Delamination:Experimental Measurement and Theoretical Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃育熙;董奕鍾;陳壁彰 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsi Huang;Yi-Chung Tung;Bi-Chang Chen | en |
| dc.subject.keyword | 膠體內聚力模型,雙懸臂樑模型,數位影像關聯法,有限元素法模擬,膠帶,數值方法, | zh_TW |
| dc.subject.keyword | Adhesive Cohesive Model,Double Cantilever Beam Model,Digital Image Correlation Method,Finite Element Method Simulation,Adhesive Tape,Numerical Fitting, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202301545 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2023-10-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
