Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89153
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝俊霖zh_TW
dc.contributor.advisorChoon-Ling Siaen
dc.contributor.author李怡珍zh_TW
dc.contributor.authorYi-Chen Leeen
dc.date.accessioned2023-08-30T16:05:30Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-14-
dc.identifier.citationAhn, J., & Kahlor, L. A. (2020). No Regrets When It Comes to Your Health: Anticipated Regret, Subjective Norms, Information Insufficiency and Intent to Seek Health Information from Multiple Sources. Health Communication, 35(10), 1295-1302. https://doi.org/10.1080/10410236.2019.1626535
Aladwani, A. M., & Palvia, P. C. (2002). Developing and validating an instrument for measuring user-perceived web quality. Information & Management, 39(6), 467-476. https://doi.org/10.1016/S0378-7206(01)00113-6
Alhammad, M. M., & Gulliver, S. (2014). Consideration of persuasive technology on users acceptance of e-commerce: exploring perceived persuasiveness. Journal of Communication and Computer, 11(2), 133-142.
Anderson, R. E., & Srinivasan, S. S. (2003). E‐satisfaction and e‐loyalty: A contingency framework. Psychology & Marketing, 20(2), 123-138.
Aribarg, A., & Schwartz, E. M. (2020). Native advertising in online news: Trade-offs among clicks, brand recognition, and website trustworthiness. Journal of Marketing Research, 57(1), 20-34. https://doi.org/10.1177/002224371987
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.
Batini, C., Rula, A., Scannapieco, M., & Viscusi, G. (2015). From data quality to big data quality. Journal of Database Management (JDM), 26(1), 60-82. https://doi.org/10.4018/JDM.2015010103
Bedeian, A. G. (2003). The manuscript review process: The proper roles of authors, referees, and editors. Journal of Management Inquiry, 12(4), 331-338. https://doi.org/10.1177/1056492603258974
Bentley, R. (2023). Website first impressions – you have just 0.05 seconds to impress. https://michoncreative.co.uk/articles/website-first-impressions-you-have-just-0-05-seconds-to-impress/
CBS. (2021). More online searches for health and lifestyle information. Statistics Netherlands. https://www.cbs.nl/en-gb/news/2021/04/more-online-searches-for-health-and-lifestyle-information
Chaiken, S. (1980). Heuristic versus systematic information processing. Journal of Personality and Social Psychology, 39(5). https://doi.org/10.1037/0022-3514.39.5.752
Chang, Y.-S., Zhang, Y., & Gwizdka, J. (2021). The effects of information source and eHealth literacy on consumer health information credibility evaluation behavior. Computers in Human Behavior, 115, 106629. https://doi.org/10.1016/j.chb.2020.106629
Chatterjee, S., Chakraborty, S., Sarker, S., Sarker, S., & Lau, F. Y. (2009). Examining the success factors for mobile work in healthcare: A deductive study. Decision Support Systems, 46(3), 620-633. https://doi.org/10.1016/j.dss.2008.11.003
Choi, W. (2013). What makes online health information credible for older adults. CHI 2013: Changing Perspectives, Paris, France.
Choi, W. (2020). Older adultsʼ credibility assessment of online health information: An exploratory study using an extended typology of web credibility. Journal of the Association for Information Science and Technology, 71(11), 1295-1307. https://doi.org/10.1002/asi.24341
Choi, W., & Stvilia, B. (2015). Web credibility assessment: Conceptualization, operationalization, variability, and models. Journal of the Association for Information Science and Technology, 66(12), 2399-2414. https://doi.org/10.1002/asi.23543
Clark, M. (2020). 37 Self Diagnosis Statistics: Don't Do It Yourself. https://etactics.com/blog/self-diagnosis-statistics
Collier, J. E., & Bienstock, C. C. (2006). Measuring service quality in e-retailing. Journal of Service Research, 8(3), 260-275.
Cyr, D. (2008). Modeling web site design across cultures: relationships to trust, satisfaction, and e-loyalty. Journal of Management Information Systems, 24(4), 47-72. https://doi.org/10.2753/MIS0742-1222240402
Cyr, D., Head, M., Lim, E., & Stibe, A. (2018). Using the elaboration likelihood model to examine online persuasion through website design. Information & Management, 55(7), 807-821. https://doi.org/10.1016/j.im.2018.03.009
Davis, J. M., & Tuttle, B. M. (2013). A heuristic–systematic model of end-user information processing when encountering IS exceptions. Information & Management, 50(2-3), 125-133. https://doi.org/10.1016/j.im.2012.09.004
DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
Deng, L., & Poole, M. S. (2010). Affect in Web Interfaces: A Study of the Impacts of Web Page Visual Complexity and Order. MIS Quarterly, 34(4). https://doi.org/10.2307/25750702
Diviani, N., van den Putte, B., Giani, S., & van Weert, J. C. (2015). Low health literacy and evaluation of online health information: a systematic review of the literature. Journal of Medical Internet Research, 17(5), e112. https://doi.org/10.2196/jmir.4018
Drozd, F., Lehto, T., & Oinas-Kukkonen, H. (2012). Exploring perceived persuasiveness of a behavior change support system: a structural model. International Conference on Persuasive Technology,
Dutta-Bergman, M. J. (2004). Primary sources of health information: comparisons in the domain of health attitudes, health cognitions, and health behaviors. Health Communication, 16(3), 273-288. https://doi.org/10.1207/S15327027HC1603_1
Eastin, M. S. (2001). Credibility assessments of online health information: The effects of source expertise and knowledge of content. Journal of Computer-Mediated Communication, 6(4), JCMC643. https://doi.org/10.1111/j.1083-6101.2001.tb00126.x
Eysenbach, G., & Köhler, C. (2002). How do consumers search for and appraise health information on the world wide web? Qualitative study using focus groups, usability tests, and in-depth interviews. BMJ, 324(7337), 573-577. https://doi.org/10.1136/bmj.324.7337.573
Fang, Y. H., Chiu, C. M., & Wang, E. T. G. (2011). Understanding customers' satisfaction and repurchase intentions. Internet Research, 21(4), 479-503. https://doi.org/10.1108/10662241111158335
Fiske, S. T., & Neuberg, S. L. (1990). A Continuum of Impression Formation, from Category-Based to Individuating Processes: Influences of Information and Motivation on Attention and Interpretation. In (pp. 1-74). https://doi.org/10.1016/s0065-2601(08)60317-2
Fogg, B. J. (1999). Persuasive technologies. Communications of the ACM, 42(5), 26-29.
Fogg, B. J. (2003). Persuasive technology: using computers to change what we think and do (Vol. 2002). Morgan Kaufmann, San Francisco.
Fox, S., & Duggan, M. (2013). Health Online 2013. https://www.ordinedeimedici.com/documenti/Docs7-cybercondria-PIP-HealthOnline.pdf
Freeman, K. S., & Spyridakis, J. H. (2009). Effect of contact information on the credibility of online health information. IEEE Transactions on Professional Communication, 52(2), 152-166. https://doi.org/10.1109/TPC.2009.2017992
Fuchs, T., Hanaya, H., Seilacher, E., Koester, M.-J., Keinki, C., Liebl, P., & Huebner, J. (2017). Information deficits and second opinion seeking–A survey on cancer patients. Cancer Investigation, 35(1), 62-69. https://doi.org/10.1080/07357907.2016.1242012
Galbraith, B., & Almaer, D. (2019). Google I/O 2019: What’s new with Chrome and the Web. Chromium Blog. . https://blog.chromium.org/2019/05/google-io-2019-whats-new-with-chrome.html
Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. Oxford University Press, USA.
Giudice. (2010). Crowdsourcing credibility The impact of audience feedback on Web page credibility. Proceedings of the American Society for Information Science and Technology, 47(1), 1-9. https://doi.org/10.1002/meet.14504701099
Haan, K. (2023). Top Website Statistics For 2023. https://www.forbes.com/advisor/business/software/website-statistics/#sources_section
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
Hamilton, M. A. (1998). Message variables that mediate and moderate the effect of equivocal language on source credibility. Journal of Language and Social Psychology, 17(1), 109-143.
Hargittai, E., Fullerton, L., Menchen-Trevino, E., & Thomas, K. Y. (2010). Trust online: Young adults' evaluation of web content. International Journal of Communication, 4, 27.
Harkins, S. G., & Petty, R. E. (1981). Effects of source magnification of cognitive effort on attitudes: An information-processing view. Journal of Personality and Social Psychology, 40(3), 401. https://doi.org/10.1037/0022-3514.40.3.401
Harkins, S. G., & Petty, R. E. (1987). Information utility and the multiple source effect. Journal of Personality and Social Psychology, 52(2), 260-268. https://doi.org/10.1037/0022-3514.52.2.260
Hillen, M. A., Gutheil, C. M., Smets, E. M., Hansen, M., Kungel, T. M., Strout, T. D., & Han, P. K. (2017). The evolution of uncertainty in second opinions about prostate cancer treatment. Health Expectations, 20(6), 1264-1274.
Hong, T. (2006a). Contributing factors to the use of health-related websites. Journal of Health Communication, 11(2), 149-165. https://doi.org/10.1080/10810730500526679
Hong, T. (2006b). The influence of structural and message features on Web site credibility. Journal of the American Society for Information Science and Technology, 57(1), 114-127. https://doi.org/10.1002/asi.20258
Huss, N. (2023). How Many Websites Are There in the World? https://siteefy.com/how-many-websites-are-there/
Jarvenpaa, S. L., & Todd, P. A. (1996). Consumer reactions to electronic shopping on the World Wide Web. International Journal of Electronic Commerce, 1(2), 59-88. https://doi.org/10.1080/10864415.1996.11518283
Jia, Y., Ouyang, J., & Guo, Q. (2021). When rich pictorial information backfires: The interactive effects of pictures and psychological distance on evaluations of tourism products. Tourism Management, 85, 104315. https://doi.org/10.1016/j.tourman.2021.104315
Josephson, S., Barnes, S. B., & Lipton, M. (2010). Visualizing the Web: evaluating online design from a visual communication perspective (Vol. 1).
Keen, P., Ballance, G., Chan, S., & Schrump, S. (1999). Electronic commerce relationships: Trust by design. Prentice Hall PTR.
Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1-22.
Kim, D., & Benbasat, I. (2006). The Effects of Trust-Assuring Arguments on Consumer Trust in Internet Stores: Application of Toulmin's Model of Argumentation. Information Systems Research, 17(3), 286-300. https://doi.org/10.1287/isre.1060.0093
Kim, H., & Fesenmaier, D. R. (2008). Persuasive design of destination web sites: An analysis of first impression. Journal of Travel Research, 47(1), 3-13. https://doi.org/10.1177/0047287507312405
Kim, P., Eng, T. R., Deering, M. J., & Maxfield, A. (1999). Published Criteria for Evaluating Health Related Web Sites. BMJ, 318(7184), 647-649. https://doi.org/10.1136/bmj.318.7184.647
Kitchens, B., Harle, C. A., & Li, S. (2014). Quality of health-related online search results. Decision Support Systems, 57, 454-462. https://doi.org/10.1016/j.dss.2012.10.050
Klawitter, E., & Hargittai, E. (2018). Shortcuts to well being? evaluating the credibility of online health information through multiple complementary heuristics. Journal of Broadcasting & Electronic Media, 62(2), 251-268. https://doi.org/10.1080/08838151.2018.1451863
Koh, Y. J., & Sundar, S. S. (2010). Effects of specialization in computers, web sites, and web agents on e-commerce trust. International Journal of Human-Computer Studies, 68(12), 899-912. https://doi.org/10.1016/j.ijhcs.2010.08.002
Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites. International Journal of Human-Computer Studies, 60(3), 269-298. https://doi.org/10.1016/j.ijhcs.2003.09.002
Lee, A. Y., & Labroo, A. A. (2004). The effect of conceptual and perceptual fluency on brand evaluation. Journal of Marketing Research, 41(2), 151-165.
Lee, M., & Faber, R. J. (2007). Effects of product placement in on-line games on brand memory: A perspective of the limited-capacity model of attention. Journal of Advertising, 36(4), 75-90. https://doi.org/10.2753/JOA0091-3367360406
Lee, M. K. O., Shi, N., Cheung, C. M. K., Lim, K. H., & Sia, C. L. (2011). Consumer's decision to shop online: The moderating role of positive informational social influence. Information & Management, 48(6), 185-191. https://doi.org/10.1016/j.im.2010.08.005
Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ a methodology for information quality assessment. Information & Management, 40, 133–146. https://doi.org/10.1016/S0378-7206(02)00043-5
Li, J., Sia, C. L., & Huang, W. (2018). A conceptual cognitive model for understanding the coexistence of trust and distrust in health information websites. 39th International Conference on Information Systems (ICIS 2018),
Li, M.-Q., Lee, Y.-C., & Wu, L.-L. (2020). Sidedness Effect of Online Review. In PACIS (p. 125).
Liang, T.-P., Ho, Y.-T., Li, Y.-W., & Turban, E. (2011). What drives social commerce: The role of social support and relationship quality. International Journal of Electronic Commerce, 16(2), 69-90. https://doi.org/10.2753/JEC1086-4415160204
Liang, T.-P., Lai, H.-J., & Ku, Y.-C. (2014). Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings. Journal of Management Information Systems, 23(3), 45-70. https://doi.org/10.2753/mis0742-1222230303
Lindgaard, G., Dudek, C., Sen, D., Sumegi, L., & Noonan, P. (2011). An exploration of relations between visual appeal, trustworthiness and perceived usability of homepages. ACM Transactions on Computer-Human Interaction, 18(1), 1-30. https://doi.org/10.1145/1959022.1959023
Liu, C.-W., Lo, S.-K., Hsieh, A.-Y., & Hwang, Y. (2018). Effects of banner Ad shape and the schema creating process on consumer internet browsing behavior. Computers in Human Behavior, 86, 9-17. https://doi.org/10.1016/j.chb.2018.04.034
Liu, C., Tian, Q., & Chen, M. (2021). Distinguishing Personality Recognition and Quantification of Emotional Features Based on Users' Information Behavior in Social Media. Journal of Database Management (JDM), 32(2), 76-91. https://doi.org/10.4018/JDM.20210401.oa1
Liu, F., & Zuo, M. (2021). Learn from the rumors: International comparison of COVID-19 online rumors between China and the United Kingdom. Journal of Database Management (JDM), 32(3), 46-68. https://doi.org/10.4018/JDM.2021070103
Louis, M. R., & Sutton, R. I. (1991). Switching cognitive gears From habits of mind to active thinking. Human Relations, 44(1), 55-76.
MacInnis, D. J., & Price, L. L. (1987). The role of imagery in information processing: Review and extensions. Journal of Consumer Research, 13(4), 473-491. https://doi.org/10.1086/209082
Matemba, E. D., Li, G., & Maiseli, B. J. (2018). Consumers' Stickiness to Mobile Payment Applications: An Empirical Study of WeChat Wallet. Journal of Database Management (JDM), 29(3), 43-66. https://doi.org/10.4018/JDM.2018070103
McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-315. https://doi.org/10.1287/isre.13.3.296.76
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3), 334-359. https://doi.org/10.1287/isre.13.3.334.81
Metzger, M. J., & Flanagin, A. J. (2013). Credibility and trust of information in online environments: The use of cognitive heuristics. Journal of Pragmatics, 59, 210-220. https://doi.org/10.1016/j.pragma.2013.07.012
Metzger, M. J., Flanagin, A. J., & Medders, R. B. (2010). Social and Heuristic Approaches to Credibility Evaluation Online. Journal of Communication, 60(3), 413-439. https://doi.org/10.1111/j.1460-2466.2010.01488.x
Meyers-Levy, J., Louie, T. A., & Curren, M. T. (1994). How does the congruity of brand names affect evaluations of brand name extensions? Journal of Applied Psychology, 79(1), 46-53. https://doi.org/10.1037//0021-9010.79.1.46
Mirbabaie, M., Amojo, I., & Stieglitz, S. (2021). Affording Twitter in Emergency Situations: The Occurrence of Rumor Sense-Making. Journal of Database Management (JDM), 32(2), 50-66. https://doi.org/10.4018/JDM.2021040104
Moore, D. J., & Reardon, R. (1987). Source magnification: The role of multiple sources in the processing of advertising appeals. Journal of Marketing Research, 24(4), 412-417.
Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 185-200. https://doi.org/10.2307/20721420
Mun, Y. Y., Yoon, J. J., Davis, J. M., & Lee, T. (2013). Untangling the antecedents of initial trust in Web-based health information: The roles of argument quality, source expertise, and user perceptions of information quality and risk. Decision Support Systems, 55(1), 284-295. https://doi.org/10.1016/j.dss.2013.01.029
Nicolaou, A. I., & McKnight, D. H. (2006). Perceived Information Quality in Data Exchanges: Effects on Risk, Trust, and Intention to Use. Information Systems Research, 17(4), 332-351. https://doi.org/10.1287/isre.1060.0103
Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Industrial Management & Data Systems, 116(9), 1849-1864. https://doi.org/10.1108/IMDS-07-2015-0302
O'Keefe, D. J. (2015). Persuasion: Theory and Research. Sage Publications.
Oeldorf-Hirsch, A., & Sundar, S. S. (2015). Posting, commenting, and tagging: Effects of sharing news stories on Facebook. Computers in Human Behavior, 44, 240-249. https://doi.org/10.1016/j.chb.2014.11.024
Oinas-Kukkonen, H., & Harjumaa, M. (2009). Persuasive systems design: Key issues, process model, and system features. Communications of the Association for Information Systems, 24(1), 28. https://doi.org/10.17705/1CAIS.02428
Ojo, A. I. (2017). Validation of the DeLone and McLean Information Systems Success Model. Healthcare Informatics Research, 23(1), 60-66. https://doi.org/10.4258/hir.2017.23.1.60
Ou, C. X., & Sia, C. L. (2009). To trust or to distrust, that is the question: Investigating the trust-distrust paradox. Communications of the ACM, 52(5), 135-139.
Palmer, J. W. (2002). Web Site Usability, Design, and Performance Metrics. Information Systems Research, 13(2), 151-167. https://doi.org/10.1287/isre.13.2.151.88
Park, D.-H., & Park, S.-B. (2008). The multiple source effect of online consumer reviews on brand evaluations: Test of the risk diversification hypothesis. ACR North American Advances.
Park, S. B., & Park, D. H. (2013). The effect of low‐versus high‐variance in product reviews on product evaluation. Psychology & Marketing, 30(7), 543-554. https://doi.org/10.1002/mar.20626
Peng, C.-H., Lurie, N. H., & Slaughter, S. A. (2019). Using Technology to Persuade: Visual Representation Technologies and Consensus Seeking in Virtual Teams. Information Systems Research, 30(3), 948-962. https://doi.org/10.1287/isre.2019.0843
Peng, C.-H., Yin, D., & Zhang, H. (2020). More than Words in Medical Question-and-Answer Sites: A Content-Context Congruence Perspective. Information Systems Research, 31(3), 913-928. https://doi.org/10.1287/isre.2020.0923
Perez, S. (2019). Google rethinks navigation with launch of ‘Portals’ on Chrome Canary. TechCrunch. https://techcrunch.com/2019/05/07/google-rethinks-navigation-with-launch-of-portals-on-chrome-canary/?guccounter=1
Petrova, P. K., & Cialdini, R. B. (2008). Evoking the imagination as a strategy of influence. In Handbook of Consumer Psychology (pp. 510-528). Routledge.
Petty, R. E., & Cacioppo, J. T. (1979). Issue involvement can increase or decrease persuasion by enhancing. Journal of Personality and Social Psychology, 37(10), 1915-1926.
Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of Personality and Social Psychology, 41(5). https://doi.org/10.1037/0022-3514.41.5.847
Petty, R. E., & Wegener, D. T. (2010). Attitude Change: Multiple Roles for Persuasion Variables. (Oxford University Press, 2010.)
Pornpitakpan, C. (2004). The persuasiveness of source credibility. Journal of Applied Social Psychology, 34(2), 243-281. https://doi.org/10.1111/j.1559-1816.2004.tb02547.x
Powell, J., Inglis, N., Ronnie, J., & Large, S. (2011). The characteristics and motivations of online health information seekers: cross-sectional survey and qualitative interview study. Journal of Medical Internet Research, 13(1), e20. https://doi.org/10.2196/jmir.1600
Rains, S. A., & Karmikel, C. D. (2009). Health information-seeking and perceptions of website credibility: Examining Web-use orientation, message characteristics, and structural features of websites. Computers in Human Behavior, 25(2), 544-553. https://doi.org/10.1016/j.chb.2008.11.005
Rieh, S. Y. (2002). Judgment of information quality and cognitive authority in the Web. Journal of the American Society for Information Science and Technology, 53(2), 145-161. https://doi.org/10.1002/asi.10017
Roman, J., & Gadani, L. (2021). Portals. https://wicg.github.io/portals/.
Romero, T. (2019). Googling health symptoms is problematic, but many Americans still do it. https://www.phillyvoice.com/new-survey-finds-googling-symptoms-problematic/
Sbaffi, L., & Rowley, J. (2017). Trust and Credibility in Web-Based Health Information: A Review and Agenda for Future Research. Journal of Medical Internet Research, 19(6), e218. https://doi.org/10.2196/jmir.7579
Schwarz, N. (2004). Metacognitive experiences in consumer judgment and decision making. Journal of Consumer Psychology, 14(4), 332-348. https://doi.org/10.1207/s15327663jcp1404_2
Shankaranarayan, G., Ziad, M., & Wang, R. Y. (2003). Managing data quality in dynamic decision environments: An information product approach. Journal of Database Management (JDM), 14(4), 14-32. https://doi.org/10.4018/jdm.2003100102
Shi, J., Hu, P., Lai, K. K., & Chen, G. (2018). Determinants of users’ information dissemination behavior on social networking sites. Internet Research, 28(2), 393-418. https://doi.org/10.1108/IntR-01-2017-0038
Shiau, W.-L., Siau, K., Yu, Y., & Guo, J. (2021). Research Commentary on IS/IT Role in Emergency and Pandemic Management: Current and Future Research. Journal of Database Management (JDM), 32(2), 67-75. https://doi.org/10.4018/JDM.2021040105
Shin, D., & Hwang, Y. (2017). Integrated acceptance and sustainability evaluation of Internet of Medical Things. Internet Research, 27(5), 1227-1254. https://doi.org/10.1108/IntR-07-2016-0200
Siau, K., Long, Y., & Ling, M. (2010). Toward a unified model of information systems development success. Journal of Database Management (JDM), 21(1), 80-101. https://doi.org/10.4018/jdm.2010112304
Simons, H. (2011). Persuasion in Society. Routledge.
Song, S., Zhao, Y. C., Yao, X., Ba, Z., & Zhu, Q. (2021). Short video apps as a health information source: an investigation of affordances, user experience and users’ intention to continue the use of TikTok. Internet Research, 31(6), 2120-2142. https://doi.org/10.1108/intr-10-2020-0593
Stibe, A. (2015). Advancing typology of computer-supported influence: moderation effects in socially influencing systems. International Conference on Persuasive Technology,
Stvilia, B., Mon, L., & Yi, Y. J. (2009). A model for online consumer health information quality. Journal of the American Society for Information Science and Technology, 60(9), 1781-1791. https://doi.org/10.1002/asi.21115
Sun, Y., Zhang, Y., Gwizdka, J., & Trace, C. B. (2019). Consumer evaluation of the quality of online health information: systematic literature review of relevant criteria and indicators. Journal of Medical Internet Research, 21(5), e12522. https://doi.org/10.2196/12522
Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility. MacArthur Foundation Digital Media and Learning Initiative.
Tam, K. Y., & Ho, S. Y. (2005). Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Information Systems Research, 16(3), 271-291. https://doi.org/10.1287/isre.1050.0058
Thielsch, M. T., Blotenberg, I., & Jaron, R. (2014). User evaluation of websites From first impression to recommendation. Interacting With Computers, 25(1). https://doi.org/10.1112/iwcomp/iwt033
Tuch, A. N., Roth, S. P., Hornbæk, K., Opwis, K., & Bargas-Avila, J. A. (2012). Is beautiful really usable? Toward understanding the relation between usability, aesthetics, and affect in HCI. Computers in Human Behavior, 28(5), 1596-1607. https://doi.org/10.1016/j.chb.2012.03.024
Turk, T., Ewing, M. T., & Newton, F. J. (2006). Using ambient media to promote HIV/AIDS protective behaviour change. International Journal of Advertising, 25(3), 333-359. https://doi.org/10.1080/02650487.2006.11072973
Uribe, R., Buzeta, C., & Velásquez, M. (2016). Sidedness, commercial intent and expertise in blog advertising. Journal of Business Research, 69(10), 4403-4410. https://doi.org/10.1016/j.jbusres.2016.04.102
Utsunomiya, Y. (2021). Hands-on with Portals: seamless navigation on the web. web.dev. https://web.dev/hands-on-portals/
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap95
Wang, H., Ma, J., Zhao, Z., Jia, Z., Ji, Z., & Wu, J. (2022). Adversarial Training for Predicting the Trend of the COVID-19 Pandemic. Journal of Database Management (JDM), 33(1), 1-16. https://doi.org/10.4018/JDM.299560
Wang, Y.-S. (2008). Assessing e-commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557. https://doi.org/10.1111/j.1365-2575.2007.00268.x
Westerman, D., Spence, P. R., & Van Der Heide, B. (2014). Social Media as Information Source: Recency of Updates and Credibility of Information. Journal of Computer-Mediated Communication, 19(2), 171-183. https://doi.org/10.1111/jcc4.12041
Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85-102. https://doi.org/10.1287/isre.1050.0042
Wong, D. K., & Cheung, M. K. (2019). Online Health Information Seeking and eHealth Literacy Among Patients Attending a Primary Care Clinic in Hong Kong: A Cross-Sectional Survey. Journal of Medical Internet Research, 21(3), e10831. https://doi.org/10.2196/10831
Xiao, N., Sharman, R., Rao, H. R., & Upadhyaya, S. (2014). Factors influencing online health information search: An empirical analysis of a national cancer-related survey. Decision Support Systems, 57, 417-427. https://doi.org/10.1016/j.dss.2012.10.047
Yaniv, I., & Milyavsky, M. (2007). Using advice from multiple sources to revise and improve judgments. Organizational Behavior and Human Decision Processes, 103(1), 104-120. https://doi.org/10.1016/j.obhdp.2006.05.006
Ye, X., Peng, X., Wang, X., & Teo, H.-H. (2020). Developing and Testing a Theoretical Path Model of Web Page Impression Formation and Its Consequence. Information Systems Research, 31(3), 929-949. https://doi.org/10.1287/isre.2020.0924
Yong, J. Y., Stvilia, B., & Mon, L. (2012). Cultural influences on seeking quality health information: An exploratory study of the Korean community. Library & Information Science Research, 34(1), 45-51. https://doi.org/10.1016/j.lisr.2011.06.001
Zhang, D., Zhang, F., Liu, S., & Du, H. S. (2019). Impact of referral reward program on innovative customers’ follow-up e-referral. Information Technology & People, 32(3), 559-578. https://doi.org/10.1108/itp-06-2017-0188
Zhang, P., & Von Dran, G. M. (2000). Satisfiers and dissatisfiers: A two‐factor model for website design and evaluation. Journal of the American society for information science, 51(14), 1253-1268.
Zhao, X., Fan, J., Basnyat, I., & Hu, B. (2020). Online Health Information Seeking Using "#COVID-19 Patient Seeking Help" on Weibo in Wuhan, China: Descriptive Study. Journal of Medical Internet Research, 22(10), e22910. https://doi.org/10.2196/22910
Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. Journal of Consumer Research, 37(2), 197-206. https://doi.org/10.1086/651257
Ziegler, R., Diehl, M., & Ruther, A. (2002). Multiple source characteristics and persuasion Source inconsistency. Personality and Social Psychology Bulletin, 28(4), 496-508.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89153-
dc.description.abstract本論文旨在全面探討網路讀者與使用者如何理解健康網站的資訊品質、可信度和網站整體評估。實證研究證明,網站的資訊特徵和設計特性對於資訊品質、可信度和網站評估有重要影響。過去文獻也驗證多重來源的資訊驗證相較於單一來源的資訊驗證更具有說服力與可信度。然而,很少有研究著重於整合多個不同的網站來源,並檢驗資訊特徵和網站設計特性,尤其是與健康相關的網站。鑑於許多人不可避免地喜歡在多個網站上尋求與驗證健康資訊,以幫助他們了解自己的健康狀況。為了填補這個研究缺口,本論文探討了多個健康網站來源中的資訊整合,驗證資訊特徵對於感知資訊品質和可信度的影響,以及視覺化的設計特性對於感知網站說服力、用戶行為意圖的影響。因此,本論文中包含的兩個研究都是基於多個健康網站來源整合所進行的實驗設計。zh_TW
dc.description.abstractThis dissertation aims to comprehensively understand how online readers and users make sense of information quality, credibility, and website overall evaluation of healthcare websites. Empirical studies have confirmed that the information characteristics and design features substantially impact information quality, credibility, and website evaluation. Past literature also proved that information verification from multiple sources is more persuasive and credible than a single source. Nevertheless, few studies have looked at integrating multiple website sources and examined the information characteristics and design features, especially in health-related websites. In view of many people unavoidably prefer to search and verify health information across many website sources to help them understand their health conditions. To fill this research gap, this dissertation explores the integration of healthcare information from multiple website sources. This dissertation examines the impact of information characteristics on perceived information quality and credibility, as well as the effect of the visual design features on perceived website persuasiveness and behavior intentions of users, respectively. Hence, two essays in this dissertation are based on the experimental designs of multiple healthcare website sources.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:05:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:05:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書
ACKNOWLEDGEMENTS
中文摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1
INTRODUCTION 1
1.1 Essay 1 4
1.2 Essay 2 5
CHAPTER 2
EXAMINING THE MULTIPLE INFORMATION SOURCES ON INFORMATION QUALITY AND CREDIBILITY: AN EXAMPLE OF THE EXPERIMENTAL HEALTHCARE WEBSITE 7
2.1 INTRODUCTION 7
2.2 THEORETICAL FRAMEWORK 13
2.2.1 Multiple source effect 13
2.2.2 Perceived information quality and credibility 15
2.2.3 Source-expertise 17
2.2.4 Information-sidedness 18
2.2.5 Information-sidedness as the moderator for the effect of perceived information quality 19
2.2.6 Impacts on perceived credibility and sharing intention 22
2.3 METHODOLOGY 24
2.3.1 Multiple-websites integration by Portals 24
2.3.2 Experimental materials and pilot test 25
2.3.3 Manipulation of independent variables 26
2.3.4 Measurements of dependent variables 28
2.3.5 Participants 29
2.3.6 Procedure 30
2.4 DATA ANALYSIS AND RESULTS 31
2.4.1 Preliminary test and multiple sources verification 31
2.4.2 Manipulation checks 33
2.4.3 Reliability and validity of measurements 34
2.4.4 Experimental results 35
2.4.5 Path analysis results 37
2.5 DISCUSSIONS 39
2.5.1 Theoretical implications 42
2.5.2 Managerial implications 43
2.5.3 Limitations 44
2.5.4 Future research 44
2.5.5 Conclusions 45
CHAPTER 3
EXPLORATION OF PERCEIVED WEBSITE PERSUASIVENESS: USING PERSUASIVE TECHNOLOGY AND MULTIPLE WEBSITES INTEGRATION TO PERSUADE 46
3.1 INTRODUCTION 46
3.2 THEORETICAL FRAMEWORK 50
3.2.1 Persuasive technology and website persuasiveness 50
3.2.2 Persuasive design features 52
3.2.3 Visual-preview 53
3.2.4 Information-sidedness 57
3.2.5 Information-sidedness as the moderator for the effect of perceived website persuasiveness 60
3.2.6 Impacts on intention and satisfaction 62
3.3 METHODOLOGY 64
3.3.1 Experimental materials and pilot test 64
3.3.2 Manipulation of independent variables 65
3.3.3 Measurements of dependent variables 67
3.3.4 Participants 68
3.3.5 Procedure 69
3.4 DATA ANALYSIS AND RESULTS 70
3.4.1 Manipulation checks 70
3.4.2 Reliability and validity of measurements 70
3.4.3 Experimental results 72
3.4.4 Path analysis results 74
3.5 DISCUSSIONS 76
3.5.1 Theoretical implications 79
3.5.2 Managerial implications 80
3.5.3 Limitations 81
3.5.4 Future research 82
3.5.5 Conclusions 82
CHAPTER 4
CONCLUSIONS AND FUTURE WORKS 84
4.1 CONCLUSIONS OF THIS DISSERTATION 84
4.2 FUTURE WORKS 86
REFERENCES 89
Appendix A 108
Appendix B 109
Appendix C 115
Appendix D 118
Appendix E 120
Appendix F 121
Appendix G 126
-
dc.language.isoen-
dc.subject網站說服力zh_TW
dc.subject意象過程zh_TW
dc.subject說服技術zh_TW
dc.subject感知資訊品質zh_TW
dc.subject多重來源效應zh_TW
dc.subject感知可信度zh_TW
dc.subjectPerceived Information Qualityen
dc.subjectPersuasive Technologyen
dc.subjectMultiple Source Effecten
dc.subjectPerceived Credibilityen
dc.subjectWebsite Persuasivenessen
dc.subjectImagery Processen
dc.title多重資訊來源對於網站評估的影響zh_TW
dc.titleThe Impact of Multiple Information Sources on Website Evaluationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee邱兆民;許裴舫;張欣綠;顧宜錚;彭志宏zh_TW
dc.contributor.oralexamcommitteeChao-Min Chiu;Pei-Fang Hsu ;Hsin-Lu Chang;Yi-Cheng Ku;Chih-Hung Pengen
dc.subject.keyword多重來源效應,感知資訊品質,感知可信度,說服技術,意象過程,網站說服力,zh_TW
dc.subject.keywordMultiple Source Effect,Perceived Information Quality,Perceived Credibility,Persuasive Technology,Imagery Process,Website Persuasiveness,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202301527-
dc.rights.note未授權-
dc.date.accepted2023-07-17-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved