請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89148完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪立本 | zh_TW |
| dc.contributor.advisor | Li-Pen Wang | en |
| dc.contributor.author | 鄭宇伸 | zh_TW |
| dc.contributor.author | YUSHEN Chen | en |
| dc.date.accessioned | 2023-08-16T17:19:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J. (2019). Machine learning for precipitation nowcasting from radar images.
Bauer, P., Thorpe, A., and Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567):47–55. Bechini, R. and Chandrasekar, V. (2017). An enhanced optical flow technique for radar nowcasting of precipitation and winds. Journal of Atmospheric and Oceanic Technology, 34(12):2637–2658. Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166. Bowler, N. E., Pierce, C. E., and Seed, A. W. (2006). Steps: A probabilistic precipita- tion forecasting scheme which merges an extrapolation nowcast with downscaled nwp. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(620):2127–2155. Browning, K. A. (1980). Review lecture: Local weather forecasting. Proceedings of the royal society of London. A. Mathematical and Physical Sciences, 371(1745):179–211. Casagrande, L., Tomasella, J., dos Santos Alvalá, R. C., Bottino, M. J., and de Oliveira Caram, R. (2017). Early flood warning in the itajaí-açu river basin using numerical weather forecasting and hydrological modeling. Natural hazards, 88(2):741– 757. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271. Dixon, M. and Wiener, G. (1993). Titan: Thunderstorm identification, tracking, analy- sis, and nowcasting—a radar-based methodology. Journal of atmospheric and oceanic technology, 10(6):785–797. Fischer, C., Montmerle, T., Berre, L., Auger, L., and Ştefănescu, S. E. (2005). An overview of the variational assimilation in the aladin/france numerical weather-prediction system. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(613):3477–3492. Foresti, L. and Seed, A. (2014). The effect of flow and orography on the spatial distribution of the very short-term predictability of rainfall from composite radar images. Hydrology and Earth System Sciences, 18(11):4671–4686. Foresti, L., Sideris, I. V., Nerini, D., Beusch, L., and Germann, U. (2019). Using a 10-year radar archive for nowcasting precipitation growth and decay: A probabilistic machine learning approach. Weather and Forecasting, 34(5):1547–1569. Fowler, H. J., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Cabi, N. S., Chan, S., Dale, M., et al. (2021a). Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions of the Royal Society A, 379(2195):20190542. Fowler, H. J., Wasko, C., and Prein, A. F. (2021b). Intensification of short-duration rain- fall extremes and implications for flood risk: current state of the art and future direc- tions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2195):20190541. Frnda, J., Durica, M., Rozhon, J., Vojtekova, M., Nedoma, J., and Martinek, R. (2022). Ecmwf short-term prediction accuracy improvement by deep learning. Scientific Reports, 12(1):7898. Germann, U. and Zawadzki, I. (2002). Scale-dependence of the predictability of precipi- tation from continental radar images. part i: Description of the methodology. Monthly Weather Review, 130(12):2859–2873. Germann, U. and Zawadzki, I. (2004). Scale dependence of the predictability of precipi- tation from continental radar images. part ii: Probability forecasts. Journal of Applied Meteorology and Climatology, 43(1):74–89. Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T., and Millman, J., editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA. Handwerker, J. (2002). Cell tracking with trace3d—a new algorithm. Atmospheric Research, 61(1):15–34. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–362. Hering, A., Sénési, S., Ambrosetti, P., and Bernard-Bouissières, I. (2005). Nowcasting thunderstorms in complex cases using radar data. In WMO Symposium on Nowcasting and Very Short Range Forecasting, volume 570. Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780. Johnson, J., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J., Eilts, M. D., and Thomas, K. W. (1998). The storm cell identification and tracking algorithm: An enhanced wsr-88d algorithm. Weather and forecasting, 13(2):263–276. Jordan, M. I. (1986). Serial order: a parallel distributed processing approach. technical report, june 1985-march 1986. Kim, D.-S., Maki, M., Shimizu, S., and Lee, D.-I. (2012). X-band dual-polarization radar observations of precipitation core development and structure in a multi-cellular storm over zoshigaya, japan, on august 5, 2008. Journal of the Meteorological Society of Japan. Ser. II, 90(5):701–719. KIM, D.-S., MAKI, M., SHIMIZU, S., and LEE, D.-I. (2012). X-band dual-polarization radar observations of precipitation core development and structure in a multi-cellular storm over zoshigaya, japan, on august 5, 2008. 気象集誌. 第 2 輯, 90(5):701–719. Kober, K., Craig, G. C., Keil, C., and Dörnbrack, A. (2012). Blending a probabilistic now- casting method with a high-resolution numerical weather prediction ensemble for con- vective precipitation forecasts. Quarterly Journal of the Royal Meteorological Society, 138(664):755–768. Kyznarová, H. and Novák, P. (2009). Celltrack—convective cell tracking algorithm and its use for deriving life cycle characteristics. Atmospheric research, 93(1-3):317–327. Lenderink, G., Barbero, R., Loriaux, J. M., and Fowler, H. J. (2017). Super-clausius– clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. Journal of Climate, 30(15):6037 – 6052. Liu, W., Li, X., and Rahn, D. A. (2016). Storm event representation and analysis based on a directed spatiotemporal graph model. International Journal of Geographical Information Science, 30(5):948–969. Luini, L. (2021). Modeling the space–time evolution of rain fields: Electromagnetic wave propagation applications. IEEE Antennas and Propagation Magazine, 63(4):12–20. Mecikalski, J. R., Williams, J. K., Jewett, C. P., Ahijevych, D., LeRoy, A., and Walker, J. R. (2015). Probabilistic 0–1-h convective initiation nowcasts that combine geosta- tionary satellite observations and numerical weather prediction model data. Journal of Applied Meteorology and Climatology, 54(5):1039–1059. Moseley, C., Berg, P., and Haerter, J. O. (2013). Probing the precipitation life cycle by it- erative rain cell tracking. Journal of Geophysical Research: Atmospheres, 118(24):13– 361. Muñoz, C., Wang, L.-P., and Willems, P. (2018). Enhanced object-based tracking algo- rithm for convective rain storms and cells. Atmospheric Research, 201:144–158. Peak, J. E. and Tag, P. M. (1994). Segmentation of satellite imagery using hierarchical thresholding and neural networks. Journal of Applied Meteorology and Climatology, 33(5):605 – 616. Radhakrishna, B., Zawadzki, I., and Fabry, F. (2012). Predictability of precipitation from continental radar images. part v: Growth and decay. Journal of the Atmospheric Sciences, 69(11):3336–3349. Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., et al. (2021). Skilful precipitation now- casting using deep generative models of radar. Nature, 597(7878):672–677. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal represen- tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science. Schellart, A., Liguori, S., Krämer, S., Saul, A., and Rico-Ramirez, M. A. (2014). Compar- ing quantitative precipitation forecast methods for prediction of sewer flows in a small urban area. Hydrological Sciences Journal, 59(7):1418–1436. Shehu, B. and Haberlandt, U. (2022). Improving radar-based rainfall nowcasting by a nearest-neighbour approach–part 1: Storm characteristics. Hydrology and Earth System Sciences, 26(6):1631–1658. Shusse, Y., Maki, M., Shimizu, S., Iwanami, K., Maesaka, T., Suzuki, S.-I., Sakurai, N., and Misumi, R. (2015). Relationship between precipitation core behavior in cumu- lonimbus clouds and surface rainfall intensity on 18 august 2011 in the kanto region, japan. Journal of the Meteorological Society of Japan. Ser. II, 93(2):215–228. Silva Neto, C. P. D., Alves Barbosa, H., and Assis Beneti, C. A. (2016). A method for convective storm detection using satellite data. Atmósfera, 29(4):343–358. Sun, N., Zhou, Z., Li, Q., and Jing, J. (2022). Three-dimensional gridded radar echo extrapolation for convective storm nowcasting based on 3d-convlstm model. Remote Sensing, 14(17):4256. Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Agrawal, S., Hickey, J., and Kalchbrenner, N. (2020). Metnet: A neural weather model for pre-cipitation forecasting. Thorndahl, S., Nielsen, J. E., and Jensen, D. G. (2016). Urban pluvial flood prediction: a case study evaluating radar rainfall nowcasts and numerical weather prediction models as model inputs. Water Science and Technology, 74(11):2599–2610. Toth, E., Brath, A., and Montanari, A. (2000). Comparison of short-term rainfall predic- tion models for real-time flood forecasting. Journal of hydrology, 239(1-4):132–147. Wernli, H., Paulat, M., Hagen, M., and Frei, C. (2008). Sal—a novel quality measure for the verification of quantitative precipitation forecasts. Monthly Weather Review, 136(11):4470–4487. Wilson, J. W., Crook, N. A., Mueller, C. K., Sun, J., and Dixon, M. (1998). Nowcast- ing thunderstorms: A status report. Bulletin of the American Meteorological Society, 79(10):2079–2100. Zhang, W., Li, W., and Han, L. (2019). A three-dimensional convolutional-recurrent net- work for convective storm nowcasting. In 2019 IEEE International Conference on Big Knowledge (ICBK), pages 333–340. IEEE. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89148 | - |
| dc.description.abstract | 短延時雷達降雨預測模型是被廣泛地應用於預測對流性暴雨之技術,然而由於資料以及模型本身演算法的限制,大部分的短延時雷達降雨模型僅能預測雷雨胞的移動(advection);然而,在真實世界中,雷雨胞除了隨著時間產生空間上的移動之外,其強度和面積等特性也會隨時間發生變化(evolution)。
此外從文獻中,我們可以發現三維雷達過去經常用來觀測對流雨胞之演化,尤其在演化的過程中,其對流核心之高度變化與降雨強度之變化息息相關。這些觀察表明了,三維雷達有潛力可以協助我們預測雷雨胞生命之演化過程。然而,過去大多數對於三維雷達與對流降雨之間關係的研究,都侷限於個案分析,對於如何將三維雷達的資訊融入短延時降雨預報模型仍是一大挑戰。 因此,本研究旨在利用深度學習方法來預測雷雨胞隨時間的演化。執行上,第一步是使用 Muñoz 等人所提出的雨胞分離及追蹤模型,用來擷取二維雷達中的雷雨胞以及其移動軌跡。然後,再利用二維雷雨胞的位置資訊,重新從三維雷達中提取完整之三維雨胞資訊,包含:雷達反射率、雨胞面積、擬和橢圓長短軸等。而第二步則是利用擷取出來的雨胞資訊,建構及訓練一 LSTM-Encoder-Decoder 深度學習模型,建立出利用過去15分鐘的雨胞資訊來預測未來15分鐘雨胞演化之預測模型。 本實驗使用了4708組雷雨胞生命週期資訊來進行LSTM-Encoder-Decoder的模型訓練。並使用1177組雷雨胞生命週期資訊來進行模型之驗證。實驗結果顯示,本研究提出之 LSTM-Encoder-Decoder 深度學習模型可以成功地預測雷雨胞的演化,並且通過使用三維雷達所提供的資訊,在預測未來15分鐘的雷雨胞強度上,可將現有不考慮雨胞強度演化預測誤差降低約20到25\%。 | zh_TW |
| dc.description.abstract | Object-based radar rainfall nowcasting is a widely-used technique for convective storm prediction. Due to the data and algorithmic limitations, most existing object-based nowcasting methods focus on predicting the movements of each rain object (or cell). The evolution of rain cells’ properties (e.g. cell size, shape and intensity) themselves is often neglected. It is however critical to account for the temporal changes in cells’ properties in order to improve the predictability for convective storms.
In the literature, three-dimensional (3D) radar images have been used for observing the vertical feature changes through the formation process of convective rain cells. This shows the potential of extracting useful information from 3D images to facilitate characterising the life cycle of rain cells. Most of these works however focused on analysing or reconstructing the life cycles of individual convective rain cells or storm events. It remains an open challenge to incorporate 3D radar rainfall information into object-based radar rainfall nowcasting. In this research, we would like to explore the use of deep learning techniques to predict the evolution of convective rain cells. The proposed work comprises two main parts. The first part is rain cell data preparation. An enhanced TITAN storm tracking algorithm proposed by Muñoz et al. (2018) is employed to identify 2D rain cells and their temporal associations (or tracks) across successive time steps. The information of 2D cells are then used to extract cell properties from 3D radar images. These include mean reflectivity, area, major and minor axis lengths and the convective core altitude of each rain cell. In the second part of the work, a LSTM-Encoder-Decoder model is developed, which uses cells’ properties from the past 15 min to predict the evolution of these properties in the next 15 min. A total of 4708 lifespans of rain cells extracted from high-resolution (5-min, 1 km, 24 levels) 3D radar images are used to train the model, and a total of 1177 extracted lifespans are used to validate the prediction result. The result suggests that the proposed LSTM-Encoder-Decoder model can well predict the evolution of cells’ properties, and, with the employed 3D information (core altitude), the prediction errors of mean reflectivity can be further reduced by 20-25 percent at 15-min forecast lead time. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:19:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:19:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xv Chapter 1 Introduction 1 1.1 Radar-based rainfall nowcasting . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Questions and Objectives . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Object-based nowcasting . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Key object-based nowcasting models . . . . . . . . . . . . . . . . . 9 2.2 Machine learning in nowcasting . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Radar data and rain cell extraction . . . . . . . . . . . . . . . . . 15 3.2.1 Three-dimensional radar data . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Extraction of single-core convective rain cells from 2D radar images 18 3.2.3 Retrieval of core altitude from 3D radar data . . . . . . . . . . . 27 3.3 A DL-based model for cell lifespan prediction . . . . . . . . . . . . 29 3.3.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.3 Model training and testing design . . . . . . . . . . . . . . . . . 33 3.4 Estimation of prediction uncertainty . . . . . . . . . . . . . . . . . 36 3.4.1 Statistical method . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Analog method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . 39 4.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Prediction with/without 3D information . . . . . . . . . . . . . . . . 42 4.2.1 Property correlation . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 Training and validation losses . . . . . . . . . . . . . . . . . . . 45 4.2.3 Predictability and discussion . . . . . . . . . . . . . . . . . . . 48 4.3 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Statistical method . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Analog method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Chapter 5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . 83 5.1 Summary of research works and findings . . . . . . . . . . . . . . . . 83 5.2 Recommendations for future works . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | - |
| dc.language.iso | en | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 雷達 | zh_TW |
| dc.subject | 短延時降雨預測 | zh_TW |
| dc.subject | LSTM | zh_TW |
| dc.subject | Object-based nowcasting | en |
| dc.subject | radar | en |
| dc.subject | LSTM | en |
| dc.subject | deep learning | en |
| dc.title | 探索三維雷達數據於對流雨細胞特徵演變預測之應用 | zh_TW |
| dc.title | Exploring the use of 3D radar measurements to predict the lifespans of single-core convective rain cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊杉;李天浩 | zh_TW |
| dc.contributor.oralexamcommittee | Chuin-Shan Chen;Tim-Hau Lee | en |
| dc.subject.keyword | 短延時降雨預測,雷達,深度學習,LSTM, | zh_TW |
| dc.subject.keyword | Object-based nowcasting,radar,deep learning,LSTM, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202302585 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-08-02 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-02 | 20.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
