Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝zh_TW
dc.contributor.advisorGen-Huey Chenen
dc.contributor.author呂哲宇zh_TW
dc.contributor.authorChe-Yu Luen
dc.date.accessioned2023-08-16T17:13:56Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] G. M. Adel’son-Vel’skii and E. M. Landis. An Algorithm for Organization of Information. Doklady. Akademii. Nauk SSSR, 146:263–266, 1962.
[2] K. Arvind and C. P. Rangan. Connected Domination and Steiner Set on Weighted Permutation Graphs. Information Processing Letters, 41:215–220, 1992.
[3] M. J. Atallah and S. R. Kosaraju. An Efficient Algorithm for Maxdominance, with Applications. Algorithmica, 4:221–236, 1989.
[4] M. J. Atallah, G. K. Manacher, and J. Urrutia. Finding a Minimum Independent Dominating Set in a Permutation Graph. Discrete Applied Mathematics, 21:177–183, 1988.
[5] M. A. Bonuccelli. Dominating Sets and Domatic Number of Circular Arc Graphs. Discrete Applied Mathematics, 12:203–213, 1985.
[6] A. Brandstädt and D. Kratsch. On Domination Problems for Permutation and Other Graphs. Theoretical Computer Science, 54:181–198, 1987.
[7] J. M. Chang, C. W. Ho, and M. T. Ko. Powers of Asteroidal Triple-free Graphs with Applications. Ars Combinatoria, 67:161–173, 2003.
[8] H. S. Chao, F. R. Hsu, and R. C. T. Lee. An Optimal Algorithm for Finding the Minimum Cardinality Dominating Set on Permutation Graphs. Discrete Applied Mathematics, 102:159–173, 2000.
[9] T. C. E. Cheng, L. Kang, and E. Shan. A Polynomial-Time Algorithm for the Paired Domination Problem on Permutation Graphs. Discrete Applied Mathematics, 157:262–271, 2009.
[10] E. Cockayne, S. Goodman, and S. Hedetniemi. A Linear Algorithm for the Domination Number of a Tree. Information Processing Letters, 4:41–44, 1975.
[11] C. J. Colbourn and L. K. Stewart. Permutation Graphs: Connected Domination and Steiner Trees. Discrete Mathematics, 86:179–189, 1990.
[12] M. Ferber and J. M. Keil. Domination in Permutation Graphs. Journal of Algorithms, 6:309–321, 1985.
[13] M. R. Garay and D. S. Johnson. A Guide to the Theory of Np-Completeness. W. H. Freeman, 1979.
[14] W. L. Hsu and K. H. Tsai. Linear Time Algorithms on Circular-Arc Graphs. Information Processing Letters, 40:123–129, 1991.
[15] O. H. Ibarra and Q. Zheng. Some Efficient Algorithms for Permutation Graphs. Journal of Algorithms, 16:453–469, 1994.
[16] E. Lappas, S. D. Nikolopoulos, and L. Palios. An O(n)-Time Algorithm for the Paired Domination Problem on Permutation Graphs. European Journal of Combinatorics, 34:593–608, 2013.
[17] Y. D. Liang, C. Rhee, S. K. Dhall, and S. Lakshmivarahan. A New Approach for the Domination Problem on Permutation Graphs. Information Processing Letters, 37:219–224, 1991.
[18] R. M. McConnell and J. P. Spinrad. Modular Decomposition and Transitive Orientation. Discrete Mathematics, 201:189–241, 1999.
[19] A. Rana, A. Pal, and M. Pal. An Efficient Algorithm to Solve the Distance k-Domination Problem on Permutation Graphs. Journal of Discrete Mathematical Sciences and Cryptography, 19:241–255, 2016.
[20] C. Rhee, Y. D. Liang, S. K. Dhall, and S. Lakshmivarahan. An O(N + M)-Time Algorithm for Finding a Minimum-Weight Dominating Set in a Permutation Graph. SIAM Journal on Computing, 25:404–419, 1996.
[21] J. Spinrad. Transitive Orientation in O(n2) Time. Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages 457–466, 1983.
[22] K. H. Tsai and W. L. Hsu. Fast Algorithms for the Dominating Set Problem on Permutation Graphs. Algorithmica, 9:601–614, 1993.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89124-
dc.description.abstract給定一個置換π代表置換生成圖G,我們用O(n log n)時間與O(n)空間的演算法找到最小k距支配集。我們先找到一個動態規劃的規則,再參考Farber與Keil在同類型的圖上對於支配集(即k = 1的情況)的動態規劃演算法,將兩者合併後變成O(n^2)時間演算法,最後引入AVL樹,改良成O(n log n)時間演算法。zh_TW
dc.description.abstractGiven a permutation π which denotes a permutation graph G. We use an O(n log n) time and O(n) space algorithm to find a minimum distance-k dominating set. We first find a dynamic programming rule, then we combine it with another dynamic programming algorithm given by Ferber and Keil, which is used to find minimum dominating set (the case of k = 1) on permutation graphs. So the O(n2) time algorithm is created. Finally, we use AVL tree to reduce our time complexity to O(n log n).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:13:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:13:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents iv
Chapter 1 Introduction 1
1.1 Minimum Distance-k Dominating Sets . . . . . . . . . . . . . . . . 1
1.2 Permutation Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Previous Work 3
2.1 Minimum Distance-k Dominating Set on Permutation Graphs . . . . 3
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 3 A Dynamic Programming Algorithm 5
3.1 A Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 An Algorithm to Find Trapezoids . . . . . . . . . . . . . . . . . 6
3.1.3 Correctness and Complexity Analysis . . . . . . . . . . . . . . . 8
3.2 A New Distance-k Dominating Set . . . . . . . . . . . . . . . . . . 11
3.2.1 Definitions and Algorithms . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 4 An Improved Algorithm 16
4.1 Improvement by a New Distance-k Dominating Set . . . . . . . . . . 16
4.1.1 Some Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Correctness and Complexity Analysis . . . . . . . . . . . . . . . 18
4.2 A New Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Some Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Correctness and Complexity Analysis . . . . . . . . . . . . . . . 21
4.3 Improvement by AVL Trees . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 One Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Another Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 5 Conclusion 29
References 30
-
dc.language.isoen-
dc.subject動態規劃zh_TW
dc.subjectk 距支配集zh_TW
dc.subject置換生成圖zh_TW
dc.subjectAVL 樹zh_TW
dc.subjectAVL treeen
dc.subjectdistance-k dominating seten
dc.subjectpermutation graphen
dc.subjectdynamic programmingen
dc.title在置換生成圖中尋找最小的 k 距支配集zh_TW
dc.titleFinding a Minimum Distance-k Dominating Set on Permutation Graphsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor林清池zh_TW
dc.contributor.coadvisorChing-Chi Linen
dc.contributor.oralexamcommittee傅榮勝;張貴雲;薛文蔚zh_TW
dc.contributor.oralexamcommitteeJung-Sheng Fu;Guey-Yun Chang;Wen-Wei Xueen
dc.subject.keywordk 距支配集,置換生成圖,動態規劃,AVL 樹,zh_TW
dc.subject.keyworddistance-k dominating set,permutation graph,dynamic programming,AVL tree,en
dc.relation.page32-
dc.identifier.doi10.6342/NTU202303439-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved