請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉力瑜 | zh_TW |
| dc.contributor.advisor | Li-yu Daisy Liu | en |
| dc.contributor.author | 温沛得 | zh_TW |
| dc.contributor.author | Pei-Te Wen | en |
| dc.date.accessioned | 2023-08-16T17:12:57Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear regression models and applications in agricultural research. Agronomy Journal, 107(2), 786-798.
Challa, H. (1988). Modelling for crop growth control. International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation 248, Chang, C.-L., Chung, S.-C., Fu, W.-L., & Huang, C.-C. (2021). Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosystems engineering, 212, 77-105. Evans, J. R. (2013). Improving photosynthesis. Plant physiology, 162(4), 1780-1793. Gent, M. P. (2017). Factors affecting relative growth rate of lettuce and spinach in hydroponics in a greenhouse. HortScience, 52(12), 1742-1747. Hammer, P. A., & Langhans, R. (1978). Modeling of plant growth in horticulture. HortScience, 13(4), 456-458. Heinen, M. (1999). Analytical growth equations and their Genstat 5 equivalents. Netherlands Journal of Agricultural Science, 47(1), 67-89. Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & Wang, J. (2018). A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 92, 141-152. Kahlen, K., & Chen, T.-W. (2015). Predicting plant performance under simultaneously changing environmental conditions—The interplay between temperature, light, and internode growth. Frontiers in Plant science, 6, 1130. Kodali, R. K., Jain, V., & Karagwal, S. (2016). IoT based smart greenhouse. 2016 IEEE region 10 humanitarian technology conference (R10-HTC), Lentz, W. (1998). Model applications in horticulture: a review. Scientia horticulturae, 74(1-2), 151-174. Naumburg, E., Ellsworth, D. S., & Katul, G. G. (2001). Modeling dynamic understory photosynthesis of contrasting species in ambient and elevated carbon dioxide. Oecologia, 126, 487-499. Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194(3), 760-774. Salomez, J., & Hofman, G. (2007). A soil temperature/short-wave radiation growth model for butterhead lettuce under protected cultivation in Flanders. Journal of plant nutrition, 30(3), 397-410. Shimizu, H., Kushida, M., & Fujinuma, W. (2008). A growth model for leaf lettuce under greenhouse environments. Environmental Control in Biology, 46(4), 211-219. Song, X. P., Tan, H. T., & Tan, P. Y. (2018). Assessment of light adequacy for vertical farming in a tropical city. Urban forestry & urban greening, 29, 49-57. Tei, F., Aikman, D., & Scaife, A. (1996). Growth of lettuce, onion and red beet. 2. Growth modelling. Annals of Botany, 78(5), 645-652. Villa-Henriksen, A., Edwards, G. T., Pesonen, L. A., Green, O., & Sørensen, C. A. G. (2020). Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosystems engineering, 191, 60-84. Whisler, F., Acock, B., Baker, D., Fye, R., Hodges, H., Lambert, J., Lemmon, H., McKinion, J., & Reddy, V. (1986). Crop simulation models in agronomic systems. Advances in agronomy, 40, 141-208. Yan, W., & Hunt, L. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5), 607-614. 行政院農業委員會. (2021). 農業統計資料查詢. 温沛得, 賴信忠, 呂朝元, & 劉力瑜. (2021). 設施葉菜產期產量預測模式. 台灣大學學士論文. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89120 | - |
| dc.description.abstract | 葉菜類在臺灣等亞熱帶地區種植易受天候變化影響,不易保存且存放時間過長會導致品質下降。依據規格化訂單需求研擬生產計畫將有助於臺灣農民提升葉菜生產效率並降低成本。本研究目標是結合溫室物聯網設備量測的環境數據,建立葉菜類蔬菜產銷訂單需求排程的統計模型,根據出貨規格與預期收穫日進行生產排程,其中預期收穫日是以訂單預計出貨日期及可容許的冷藏天數估算。本研究對象為設施短期不結球型葉菜類: 青梗白菜 (Brassica chinensis L. cv. Ching-Geeng) 與小白菜 (Brassica chinensis L.)。開發該兩種葉菜類作物生長進行統計經驗模式,以光與溫度預估鮮食重量,藉由經驗作物模式獲得預期收穫日以推得預計種植的日期。由於實際作物生長有跨年間、跨季度、跨田區的差異,我們透過開發滾動修正模組,將真實田間作物生長資訊與經驗模式所模擬之作物生長預測結合,達到準確生產排程的目的。原始輻射量經驗模式經過滾動修正模組後,均方根誤差有明顯下降,表示預測值與真實值的平均偏離程度有因為滾動修正而降低,對模擬作物鮮食重量的精確度提升,所預計估的收穫日更貼近實際收穫日。這項研究結果提供農民在生產排程中,藉由滾動修正即時更新作物實際生長狀況,提升農業經營效益。 | zh_TW |
| dc.description.abstract | Leafy green vegetables grown in subtropical regions such as Taiwan are susceptible to weather changes, making them difficult to store and leading to deterioration in quality over long periods of time. Therefore, developing a production plan based on demands would be one way to improve production efficiency and reduce the costs of leafy vegetables. The objective of this study was to develop a protocol for scheduling leafy vegetable production using environmental data measured by IoT devices. The production schedule aimed to best satisfy both the delivery specifications (including plant length and fresh weight) and the expected delivery date of the order with some allowance for storage in the refrigerator. The crops of interest in this study included Brassica chinensis L. CV. Ching-Geeng, Brassica rapa L. ssp. chinensis Jusl. and Ipomoea aquatica. Firstly, the plant length and fresh weight of the above three leafy vegetables were estimated by the cumulative radiation exponential function. When there was a discrepancy between the model prediction and the natural growth, the crop growth simulation results were real-time corrected by modifying the model parameters according to the actual sampling results. After applying the real-time Adjustment Module to the original radiation-based empirical model, there was a significant decrease in Root Mean Square Error, indicating a reduction in the average deviation between predicted values and actual values. This reduction in error demonstrates an improved accuracy in simulating crop fresh weight. Additionally, the estimated harvest date is expected to align more closely with the actual harvest date. In conclusion, we believe the results of this study could provide farmers with the opportunity to update the actual growing conditions in the field to improve the efficiency of their agricultural operations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:12:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:12:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv 第一章 前言 1 1. 臺灣蔬菜生產現況 1 2. 作物生長模式 3 3. 滾動修正與警示 5 4. 葉菜類生長系統 5 5. 研究目標 7 第二章 材料與方法 8 1. 試驗資料 8 2. 溫度輻射量經驗模式 9 3. 滾動修正模組 11 4. 季末修正模式 12 5. 訂單規格化生產排程 12 6. 模型評估 13 第三章 結果 15 1. 生長溫度輻射量模式 15 2. 季節中即時修正模組之模型評估 16 3. 季末修正模式 26 4. 訂單規格化生產排程之系統評估 31 4.1 種植日規劃 32 4.2 種植後差距 32 第四章 討論 37 1. 溫度與輻射量 37 2. 滾動修正係數 40 3. 季末修正模組 41 4 訂單規格化生產排程 41 第五章 結論 43 參考文獻 45 附錄 47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 訂單規格化生產 | zh_TW |
| dc.subject | 作物模式 | zh_TW |
| dc.subject | 溫室蔬菜 | zh_TW |
| dc.subject | 滾動修正 | zh_TW |
| dc.subject | 作物生產排程 | zh_TW |
| dc.subject | Crop Modelling | en |
| dc.subject | Leafy green vegetables | en |
| dc.subject | Crop Production Schedule | en |
| dc.subject | Production Plan Based on Demands | en |
| dc.subject | Real-Time Adjustment Module | en |
| dc.title | 經驗作物模式與滾動修正模組於溫室葉菜類蔬菜之生產排程系統 | zh_TW |
| dc.title | Production Scheduling System Using Empirical Crop Model with Real-Time Adjustment Module for Leafy Vegetables in Greenhouses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林淑怡;賴信忠 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-I Lin;Shin-Jong Lay | en |
| dc.subject.keyword | 溫室蔬菜,作物模式,訂單規格化生產,作物生產排程,滾動修正, | zh_TW |
| dc.subject.keyword | Leafy green vegetables,Crop Modelling,Production Plan Based on Demands,Crop Production Schedule,Real-Time Adjustment Module, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202302260 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 1.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
