Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁照棣zh_TW
dc.contributor.advisorChau-Ti Tingen
dc.contributor.author呂昊鈞zh_TW
dc.contributor.authorHao-Jun Luen
dc.date.accessioned2023-08-16T17:02:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAdrian-Kalchhauser, I., Blomberg, A., Larsson, T., Musilova, Z., Peart, C. R., Pippel, M., . . . Winkler, S. (2020). The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biology, 18(1), 11. doi:10.1186/s12915-019-0731-8
Akihito, Iwata, A., Kobayashi, T., Ikeo, K., Imanishi, T., Ono, H., . . . Gojobori, T. (2000). Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene, 259(1), 5-15. doi:https://doi.org/10.1016/S0378-1119(00)00488-1
Akiva, E., Brown, S., Almonacid, D. E., Barber 2nd, A. E., Custer, A. F., Hicks, M. A., . . . Meng, E. C. (2014). The structure–function linkage database. Nucleic acids research, 42(D1), D521-D530.
Allen, G. R. (1991). Field guide to the freshwater fishes of New Guinea.
Attwood, T. K., Coletta, A., Muirhead, G., Pavlopoulou, A., Philippou, P. B., Popov, I., . . . Mitchell, A. L. (2012). The PRINTS database: a fine-grained protein sequence annotation and analysis resource—its status in 2012. Database, 2012.
Baeck, G., & Park, J. M. (2015). Length–weight and length–length relationships and seasonal condition factors for two mudskippers, P eriophthalmus modestus (C antor, 1842) and P. magnuspinnatus (L ee, C hoi & R yu, 1995)(G obiidae), on tidal flats of K orea. Journal of Applied Ichthyology, 31(1), 261-264.
Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1), 11. doi:10.1186/s13100-015-0041-9
Barker, W. C., Garavelli, J. S., Huang, H., McGarvey, P. B., Orcutt, B. C., Srinivasarao, G. Y., . . . Janda, J. F. (2000). The protein information resource (PIR). Nucleic acids research, 28(1), 41-44.
Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., . . . Eddy, S. R. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141. doi:10.1093/nar/gkh121
Betancur, R. R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., . . . Ortí, G. (2017). Phylogenetic classification of bony fishes. BMC Evol Biol, 17(1), 162. doi:10.1186/s12862-017-0958-3
Boyadjiev, S. A., Kim, S. D., Hata, A., Haldeman-Englert, C., Zackai, E. H., Naydenov, C., . . . Kim, J. (2011). Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion. Clin Genet, 80(2), 169-176. doi:10.1111/j.1399-0004.2010.01550.x
Brandl, S. J., Goatley, C. H., Bellwood, D. R., & Tornabene, L. (2018). The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews, 93(4), 1846-1873.
Brandl, S. J., Tornabene, L., Goatley, C. H., Casey, J. M., Morais, R. A., Côté, I. M., . . . Bellwood, D. R. (2019). Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. science, 364(6446), 1189-1192.
Cai, L., Liu, G., Wei, Y., Zhu, Y., Li, J., Miao, Z., . . . Huang, R. (2021). Whole-genome sequencing reveals sex determination and liver high-fat storage mechanisms of yellowstripe goby (Mugilogobius chulae). Communications Biology, 4(1), 15. doi:10.1038/s42003-020-01541-9
Canapa, A., Barucca, M., Biscotti, M. A., Forconi, M., & Olmo, E. (2015). Transposons, genome size, and evolutionary insights in animals. Cytogenetic and genome research, 147(4), 217-239.
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol, 38(12), 5825-5829. doi:10.1093/molbev/msab293
Chalopin, D., Naville, M., Plard, F., Galiana, D., & Volff, J.-N. (2015). Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biology and Evolution, 7(2), 567-580.
Cimino, M. C. (1974). The nuclear DNA content of diploid and triploid Poeciliopsis and other poeciliid fishes with reference to the evolution of unisexual forms. Chromosoma, 47(3), 297-307.
Cole, K. S., & Parenti, L. R. (2022). Gonad morphology of Rhyacichthys aspro (Valenciennes, 1837), and the diagnostic reproductive morphology of gobioid fishes. Journal of Morphology, 283(3), 255-272. doi:https://doi.org/10.1002/jmor.21440
Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676.
Cuvier, G., & Valenciennes, A. (1837). Histoire naturelle des poissons. Tome douzième. Suite du livre quatorzième. Gobioïdes. Livre quinzième. Acanthoptérygiens à pectorales pédiculées. v. 12, pp i-xxiv. 1-507, 1, 344-368. Retrieved from https://www.biodiversitylibrary.org/page/4445812
De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 22(10), 1269-1271. doi:10.1093/bioinformatics/btl097
Deng, Y., Meng, M., Fang, J., Jiang, H., Sun, N., Lv, W., . . . He, S. (2021). Genome of the butterfly hillstream loach provides insights into adaptations to torrential mountain stream life. Molecular Ecology Resources, 21(6), 1922-1935. doi:https://doi.org/10.1111/1755-0998.13400
Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology, 20(1), 1-14.
Farrer, R. A. (2017). Synima: a Synteny imaging tool for annotated genome assemblies. BMC Bioinformatics, 18(1), 507. doi:10.1186/s12859-017-1939-7
Gao, X., Eladari, D., Leviel, F., Tew, B. Y., Miró-Julià, C., Cheema, F. H., . . . Al-Awqati, Q. (2010). Deletion of hensin/DMBT1 blocks conversion of β- to α-intercalated cells and induces distal renal tubular acidosis. Proceedings of the National Academy of Sciences, 107(50), 21872-21877. doi:doi:10.1073/pnas.1010364107
Gierl, C., & Reichenbacher, B. (2017). Revision of so-called Pomatoschistus (Gobiiformes, Teleostei) from the Late Eocene and Early Oligocene. Palaeontologia Electronica, 20.2.33A, 1-17. doi:10.26879/721
Gong, J., Wang, X., Zhu, C., Dong, X., Zhang, Q., Wang, X., . . . Liu, D. (2017). Insm1a Regulates Motor Neuron Development in Zebrafish. Frontiers in Molecular Neuroscience, 10. doi:10.3389/fnmol.2017.00274
Gould, A. L., Henderson, J. B., & Lam, A. W. (2022). Chromosome-Level Genome Assembly of the Bioluminescent Cardinalfish Siphamia tubifer: An Emerging Model for Symbiosis Research. Genome Biology and Evolution, 14(4). doi:10.1093/gbe/evac044
Haft, D. H., Selengut, J. D., Richter, R. A., Harkins, D., Basu, M. K., & Beck, E. (2012). TIGRFAMs and genome properties in 2013. Nucleic acids research, 41(D1), D387-D395.
He, Y., Lu, X., Qian, F., Liu, D., Chai, R., & Li, H. (2017). Insm1a Is Required for Zebrafish Posterior Lateral Line Development. Front Mol Neurosci, 10, 241. doi:10.3389/fnmol.2017.00241
Hinegardner, R., & Rosen, D. E. (1972). Cellular DNA content and the evolution of teleostean fishes. The American Naturalist, 106(951), 621-644.
Hoareau, T. B., Boissin, E., & Berrebi, P. (2012). Evolutionary history of a widespread Indo-Pacific goby: The role of Pleistocene sea-level changes on demographic contraction/expansion dynamics. Molecular Phylogenetics and Evolution, 62(1), 566-572. doi:https://doi.org/10.1016/j.ympev.2011.10.004
Hoese, D. F., & Gill, A. (1993). Phylogenetic relationships of eleotridid fishes (Perciformes: Gobioidei). Bulletin of Marine Science, 52(1), 415-440.
Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-genome annotation with BRAKER. In Gene prediction (pp. 65-95): Springer.
Hu, Y., Lu, L., Zhou, T., Sarker, K. K., Huang, J., Xia, J., & Li, C. (2021). A high-resolution genome of an euryhaline and eurythermal rhinogoby (Rhinogobius similis Gill 1895). G3 Genes|Genomes|Genetics, 12(2). doi:10.1093/g3journal/jkab395
Hu, Z. y., Zhang, Q. y., Qin, W., Tong, J. w., Zhao, Q., Han, Y., . . . Zhang, J. p. (2013). Gene miles-apart is required for formation of otic vesicle and hair cells in zebrafish. Cell Death & Disease, 4(10), e900-e900. doi:10.1038/cddis.2013.432
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., . . . Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research, 47(D1), D309-d314. doi:10.1093/nar/gky1085
Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P. S., . . . Sigrist, C. J. (2006). The PROSITE database. Nucleic acids research, 34(suppl_1), D227-D230.
Jiang, H., Lv, W., Wang, Y., Qian, Y., Wang, C., Sun, N., . . . Yang, L. (2023). Multi-omics Investigation of Freeze Tolerance in the Amur Sleeper, an Aquatic Ectothermic Vertebrate. Molecular biology and evolution, 40(3). doi:10.1093/molbev/msad040
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., . . . Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. doi:10.1093/bioinformatics/btu031
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids research, 28(1), 27-30. doi:10.1093/nar/28.1.27
Kidwell, M. G. (2002). Transposable elements and the evolution of genome size in eukaryotes. Genetica, 115(1), 49-63.
Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature biotechnology, 37(8), 907-915.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res, 27(5), 722-736. doi:10.1101/gr.215087.116
Koumans, F. P., Weber, M., & Beaufort, L. (1953). The fishes of the Indo-Australian archipelago: Brill.
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., . . . Marra, M. A. (2009). Circos: an information aesthetic for comparative genomics. Genome research, 19(9), 1639-1645. doi:10.1101/gr.092759.109
Kuang, T., Tornabene, L., Li, J., Jiang, J., Chakrabarty, P., Sparks, J. S., . . . Li, C. (2018). Phylogenomic analysis on the exceptionally diverse fish clade Gobioidei (Actinopterygii: Gobiiformes) and data-filtering based on molecular clocklikeness. Molecular Phylogenetics and Evolution, 128, 192-202. doi:https://doi.org/10.1016/j.ympev.2018.07.018
Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6(1287), 1287.
Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R., & Knapik, E. W. (2006). Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature Genetics, 38(10), 1198-1203. doi:10.1038/ng1880
Lees, J., Yeats, C., Perkins, J., Sillitoe, I., Rentzsch, R., Dessailly, B. H., & Orengo, C. (2012). Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis. Nucleic acids research, 40(D1), D465-D471.
Lehmann, R., Kovařík, A., Ocalewicz, K., Kirtiklis, L., Zuccolo, A., Tegner, J. N., . . . Symonová, R. (2021). DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows. Genome Biology and Evolution, 13(10). doi:10.1093/gbe/evab228
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv, 1303.
Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature, 475(7357), 493-496. doi:10.1038/nature10231
Lima, T., Auchincloss, A. H., Coudert, E., Keller, G., Michoud, K., Rivoire, C., . . . Baratin, D. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic acids research, 37(suppl_1), D471-D478.
Liu, Q., Mishra, M., Saxena, A. S., Wu, H., Qiu, Y., Zhang, X., . . . Miyamoto, M. M. (2021). Balancing selection maintains ancient polymorphisms at conserved enhancers for the olfactory receptor genes of a Chinese marine fish. Mol Ecol, 30(16), 4023-4038. doi:10.1111/mec.16016
Mank, J. E., & Avise, J. C. (2006). Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc Biol Sci, 273(1582), 33-38. doi:10.1098/rspb.2005.3295
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular biology and evolution, 38(10), 4647-4654. doi:10.1093/molbev/msab199
Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., . . . Gonzales, N. R. (2010). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic acids research, 39(suppl_1), D225-D229.
Martin, A. P., & Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A, 90(9), 4087-4091. doi:10.1073/pnas.90.9.4087
Masuda, H., Araga, C., & Yoshino, W. (1975). Coastal fishes of Southern Japan. Tokai University Press.: Tokyo. Japan.
Melmambessy, E. H., Mote, N., & Hamuna, B. (2019). Length-weight relationship and condition factor of mudskipper Boleophthalmus pectinirostris from Maro Estuary, Merauke Regency, Papua. Journal of Ecological Engineering, 20(8).
Mi, H., Lazareva-Ulitsky, B., Loo, R., Kejariwal, A., Vandergriff, J., Rabkin, S., . . . Campbell, M. J. (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic acids research, 33(suppl_1), D284-D288.
Miller, P. (1973). The osteology and adaptive features of Rhyacichthys aspro (Teleostei: Gobioidei) and the classification of gobioid fishes. Journal of Zoology, 171(3), 397-434.
Mistry, J., Bateman, A., & Finn, R. D. (2007). Predicting active site residue annotations in the Pfam database. BMC Bioinformatics, 8(1), 1-14.
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acids research, 35(suppl_2), W182-W185. doi:10.1093/nar/gkm321
Nadachowska-Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Molecular Ecology, 25(5), 1058-1072. doi:https://doi.org/10.1111/mec.13540
Nelson, J., Grande, T., & Wilson, M. (2016). Fishes of the World, Fifth Edition.
Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274.
Nishihara, H. (2019). Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation. Genes & Genetic Systems, 94(6), 269-281. doi:10.1266/ggs.19-00029
Nishimura, D. (2000). RepeatMasker. Biotech Software & Internet Report, 1(1-2), 36-39.
Opperman, L. A., Adab, K., & Gakunga, P. T. (2000). Transforming growth factor-beta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis. Dev Dyn, 219(2), 237-247. doi:10.1002/1097-0177(2000)9999:9999<::Aid-dvdy1044>3.0.Co;2-f
Ou, S., & Jiang, N. (2017). LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons Plant Physiology, 176(2), 1410-1422. doi:10.1104/pp.17.01310
Piegu, B., Guyot, R., Picault, N., Roulin, A., Saniyal, A., Kim, H., . . . Wing, R. A. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome research, 16(10), 1262-1269.
Putnam, N. H., O'Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., . . . Sugnet, C. W. (2016). Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome research, 26(3), 342-350.
Ranwez, V., Harispe, S., Delsuc, F., & Douzery, E. J. P. (2011). MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLOS ONE, 6(9), e22594. doi:10.1371/journal.pone.0022594
Reichenbacher, B., Přikryl, T., Cerwenka, A., Keith, P., Gierl, C., & Dohrmann, M. (2020). Freshwater gobies 30 million years ago: New insights into character evolution and phylogenetic relationships of †Pirskeniidae (Gobioidei, Teleostei). PLOS ONE, 15, e0237366. doi:10.1371/journal.pone.0237366
Rieger, A., Kemter, E., Kumar, S., Popper, B., Aigner, B., Wolf, E., . . . Blutke, A. (2016). Missense Mutation of POU Domain Class 3 Transcription Factor 3 in Pou3f3L423P Mice Causes Reduced Nephron Number and Impaired Development of the Thick Ascending Limb of the Loop of Henle. PLOS ONE, 11(7), e0158977. doi:10.1371/journal.pone.0158977
Shao, F., Wang, J., Xu, H., & Peng, Z. (2018). FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database, 2018, bax106. doi:10.1093/database/bax106
Sheehan, S., Harris, K., & Song, Y. S. (2013). Estimating Variable Effective Population Sizes from Multiple Genomes: A Sequentially Markov Conditional Sampling Distribution Approach. Genetics, 194(3), 647-662. doi:10.1534/genetics.112.149096
Sidlauskas, B., & Chakrabarty, P. (2010). The Diversity of Fishes: Biology, Evolution and Ecology. Second edition by Gene F. Helfman; Bruce B. Collette; Douglas E. Facey; Brian W. Bowen. Copeia, 2010, 527-529. doi:10.1643/OT-10-040.1
Springer, V. G. (1983). Tyson belos, new genus and species of Western Pacific fish (Gobiidae, Xenisthminae): with discussions of gobioid osteology and classification.
Storer, J., Hubley, R., Rosen, J., Wheeler, T. J., & Smit, A. F. (2021). The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA, 12(1), 2. doi:10.1186/s13100-020-00230-y
Tabouret, H., Tomadin, M., Taillebois, L., Iida, M., Lord, C., Pécheyran, C., & Keith, P. (2014). Amphidromy and marine larval phase of ancestral gobioids Rhyacichthys guilberti and Protogobius attiti (Teleostei: Rhyacichthyidae). Marine and Freshwater Research, 65(9), 776-783.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular biology and evolution, 38(7), 3022-3027. doi:10.1093/molbev/msab120
Thacker, C. E., & Hardman, M. A. (2005). Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 37(3), 858-871. doi:https://doi.org/10.1016/j.ympev.2005.05.004
Thacker, C. E., Satoh, T. P., Katayama, E., Harrington, R. C., Eytan, R. I., & Near, T. J. (2015). Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular Phylogenetics and Evolution, 93, 172-179. doi:https://doi.org/10.1016/j.ympev.2015.08.001
Tornabene, L., Chen, Y., & Pezold, F. (2013). Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). Systematics and Biodiversity, 11(3), 345-361. doi:10.1080/14772000.2013.818589
van Ginneken, V. J., & Maes, G. E. (2005). The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review. Reviews in Fish Biology and Fisheries, 15, 367-398.
Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res, 27(5), 737-746. doi:10.1101/gr.214270.116
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., . . . Earl, A. M. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE, 9(11), e112963. doi:10.1371/journal.pone.0112963
Wang, D., Su, Y., Wang, X., Lei, H., & Yu, J. (2012). Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in Mammalian intron size expansion. Evol Bioinform Online, 8, 301-319. doi:10.4137/ebo.S9758
Watanabe, M. (1972). First Record of the Gobioid Fish, Rhyacichthys aspro from Formosa. Japanese Journal of Ichthyology, 19(2), 120-124.
Wicker, T., Yu, Y., Haberer, G., Mayer, K. F., Marri, P. R., Rounsley, S., . . . Roffler, S. (2016). DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat Commun, 7, 12790. doi:10.1038/ncomms12790
Xu, Z., & Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic acids research, 35(Web Server issue), W265-W268. doi:10.1093/nar/gkm286
Yang, Y., Yoo, J. Y., Baek, S. H., Song, H. Y., Jo, S., Jung, S. H., & Choi, J. H. (2022). Chromosome-level genome assembly of the shuttles hoppfish, Periophthalmus modestus. Gigascience, 11(1). doi:10.1093/gigascience/giab089
You, X., Bian, C., Zan, Q., Xu, X., Liu, X., Chen, J., . . . Shi, Q. (2014). Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 5(1), 5594. doi:10.1038/ncomms6594
Zhang, F., & Broughton, R. E. (2013). Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Genome Biol Evol, 5(10), 1781-1791. doi:10.1093/gbe/evt129
孙帼英, & 郭学彦. (1996). 太湖河川沙塘鳢的生物学研究. 水产学报, 20(3), 193-202.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89078-
dc.description.abstract溪鱧屬於條鰭魚綱,鰕虎目溪鱧科,分布於印尼–澳大拉西亞群島、菲律賓、台灣等地的淡水區域。溪鱧科被認為是鰕虎目中較為古老的分支之一,所以對於研究鰕虎目的起源相當重要。我們從台灣各地採集了數個樣本抽取DNA組裝基因體,並從多個組織如肌肉、肝臟、眼睛、腦和鼻子等處抽取RNA分析其轉錄體,並與另外九種鰕虎魚類以及兩個外群比較。我組出來的基因體大小約為607Mb,是所有分析物種中基因組最小的。這是因為溪鱧基因組的重複序列僅佔整個基因組的28.2%,而其他鰕虎魚類則有約40-60%的重複序列。根據重複序列地景圖(repeat landscape),除了溪鱧之外,其他物種在過去的演化階段都曾歷經了重複序列擴增的現象。因此溪鱧相對小的基因組是因為他不曾經歷重複序列擴增的演化。我的組裝含有有23條染色體層級的片段,完整BUSCO值為98.43%。共註釋了25259個基因。基因的數量比較進階的鰕虎多但和外群的基因數目較為接近。基因演化速率的分析發現溪鱧的演化速率相較於其他魚類慢,這可能與溪鱧重複序列改變較少有關。對基因功能群的分析發現與側線發育有關的基因較其他魚類少,然而在與神經突觸有關的基因有擴增的現象。此外有關頭顱發育的基因在溪鱧有擴增的現象,這可能與他為了適應激流的環境而形成的扁平狀頭顱有關。另外溪鱧在與腎臟發育與滲透壓調節相關的基因的增加可能與他延長的海洋飄流其以及下海產卵的特性有關。PSMC所推估的溪鱧族群大小在450,000年前約為50萬隻。zh_TW
dc.description.abstractLoach goby (Rhyacichthys aspro) is an Actinopterygii fish which belongs to the family Rhyacichthyidae in the order Gobiiformes. It is distributed in tropical freshwaters of the Indo-Australasian archipelago, Philippines, and Taiwan. Rhyacichthyidae is recognized as one of the most primitive families within Gobiiformes, making it particularly interesting regarding the evolutionary history of Gobiiformes. In this study, the genome and transcriptome of loach goby from different tissues, including muscle, liver, eyes, brain, and nose were sequenced from multiple individuals. The assembled genome is approximately 607Mb in size, with 23 chromosome-level contigs and a complete Benchmarking Universal Single-Copy Ortholog (BUSCO) score of 98.43%. The loach goby has the smallest genome size compared to nine other Gobiiformes species and two outgroup species. The proportion of repetitive sequences in the entire genome is approximately 28.2%, whereas in other compared species, this proportion ranges from approximately 40-60%. Based on the results of repeat landscape and CAFÉ analysis, all species except the loach goby have experienced repeat element expansions. A total of 25,259 genes were annotated. The gene number is larger than that of more advanced Gobiiformes but similar to the outgroup of Gobiiformes. The evolutionary rate of the loach goby is slower than its gobioid counterparts which may be resulted in the less repeat element alteration in this species. Functional gene analysis shows loach goby has fewer genes related to lateral line development but have neuron synapse related genes expansion. Genes related to skull developments has expansion, likely due to its adaptation to torrential currents. Moreover, genes related to kidney development and osmoregulation also show sign of expansion, which could be linked to their catadromous life style. Loach goby migrate downstream into the sea for spawning and the fry undergo an extended oceanic drift period before migrating back to the rivers. The population demography estimated from pairwise sequentially markovian coalescent (PSMC) shows the population size of loach goby is approximately 5x105 around 450,000 years before present.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:02:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:02:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
List of tables vii
List of figures viii
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
Genome quality analysis and size estimation 4
Genome masking 4
Genome annotation 4
Functional annotation 5
Evolution rate analysis 6
Chromosome arrangement 6
Population genetic test and population size estimation 6
Chapter 3 Result 7
Genome statistics 7
Repeat elements 8
Genome annotation 9
Functional annotation 10
Chromosome synteny 10
Evolution rate 11
Population genetics test and population size estimation 11
Chapter 4 Discussion 13
Genome statistics 13
The small genome size of the loach goby 13
Low mutation rate 14
Functional adaptation 15
Past population demography 17
Chapter 5 Conclusion 18
References 64
Appendix 71
-
dc.language.isozh_TW-
dc.title染色體層級的基因體組裝揭示了溪鱧的特殊適應特徵zh_TW
dc.titleChromosome-level genome assembly reveals special adaptive features of the loach goby, Rhyacichthys asproen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor王弘毅zh_TW
dc.contributor.coadvisorHurng-Yi Wangen
dc.contributor.oralexamcommittee蔡怡陞;廖本揚zh_TW
dc.contributor.oralexamcommitteeIsheng Jason Tsai;Ben-Yang Liaoen
dc.subject.keyword溪鱧,鰕虎目,基因體組裝,比較基因體學,zh_TW
dc.subject.keywordLoach goby,Gobiiformes,Genome assembly,Comparative genomics,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202302056-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved