請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89074
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊士進 | zh_TW |
dc.contributor.advisor | Shih-Chin Yang | en |
dc.contributor.author | 林宗葦 | zh_TW |
dc.contributor.author | Tsung-Wei Lin | en |
dc.date.accessioned | 2023-08-16T17:01:18Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | [1] (2019). 能源用戶訂定節約能源目標及執行計畫規定.
[2] J. Hulskotte, H. Denier van der Gon, A. Visschedijk, and M. Schaap, "Brake wear from vehicles as an important source of diffuse copper pollution," Water science and technology, vol. 56, no. 1, pp. 223-231, 2007. [3] S. M. Wahid, "Automotive brake wear: a review," Environmental Science and Pollution Research, vol. 25, no. 1, pp. 174-180, 2018. [4] I. S. 519–, "Recommended practices and requirements for harmonic control in electrical power systems," 1992. [5] E. Compatibility, "Limits for Harmonic Current Emissions (Equipment input current≤ 16A per phase)," IEC Standard IEC, pp. 61000-3, 2006. [6] K. Sakthivel, S. K. Das, and K. Kini, "Importance of quality AC power distribution and understanding of EMC standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11," in 8th International conference on electromagnetic interference and compatibility, 2003: IEEE, pp. 423-430. [7] J. W. Kolar and T. Friedli, "The Essence of Three-Phase PFC Rectifier Systems—Part I," IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 176-198, 2013, doi: 10.1109/TPEL.2012.2197867. [8] J. W. Kolar and F. C. Zach, "A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 456-467, 1997, doi: 10.1109/41.605619. [9] M. Koyama, "Large capacity high efficiency three-level GCT inverter system for steel rolling mill drives," in EPE2001 Conference Record, 8, 2001. [10] C. Ma, X. Qu, Y. Li, and J. Liu, "Single-Stage Active Rectifier With Wide Impedance Conversion Ratio Range for Inductive Power Transfer System Delivering Constant Power," IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 1-13, 2023, doi: 10.1109/TPEL.2023.3248077. [11] M. Rashid, "Handbook of power electronics," New York: Academic, pp. 599-627, 2001. [12] J. Rodríguez, J. Pontt, N. Becker, and A. Weinstein, "Regenerative drives in the megawatt range for high-performance downhill belt conveyors," IEEE Transactions on Industry Applications, vol. 38, no. 1, pp. 203-210, 2002. [13] Q. Zhang et al., "Modeling of Regenerative Braking Energy for Electric Multiple Units Passing Long Downhill Section," IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3742-3758, 2022, doi: 10.1109/TTE.2022.3169901. [14] Y. f. Zhu, Q. x. Ge, H. Chen, Y. h. Li, and L. Zhao, "Study of switched reluctance motor drive system fed by voltage PWM rectifier," in 2010 International Conference on Electrical Machines and Systems, 10-13 Oct. 2010 2010, pp. 859-862. [15] X. Nian, F. Peng, and H. Zhang, "Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor," IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798-5808, 2014, doi: 10.1109/TIE.2014.2300059. [16] K. Y. Lin and K. Y. Lian, "Actual measurement on regenerative elevator drive and energy saving benefits," in 2017 International Automatic Control Conference (CACS), 12-15 Nov. 2017, pp. 1-5, doi: 10.1109/CACS.2017.8284249. [17] (2016). 電梯電力回生裝置節能應用技術手冊. [18] J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, "PWM regenerative rectifiers: state of the art," IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 5-22, 2005, doi: 10.1109/TIE.2004.841149. [19] A. Rajaei, M. Mohamadian, and A. Y. Varjani, "Vienna-Rectifier-Based Direct Torque Control of PMSG for Wind Energy Application," IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2919-2929, 2013, doi: 10.1109/TIE.2012.2227905. [20] G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu, and M. R. Ahmed, "Voltage Oriented Controller Based Vienna Rectifier for Electric Vehicle Charging Stations," IEEE Access, vol. 9, pp. 50798-50809, 2021, doi: 10.1109/ACCESS.2021.3068653. [21] T. Bariša, D. Sumina, and M. Kutija, "Control of generator- and grid-side converter for the interior permanent magnet synchronous generator," in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 22-25 Nov. 2015, pp. 1015-1020, doi: 10.1109/ICRERA.2015.7418563. [22] M. Chinchilla, S. Arnaltes, and J. C. Burgos, "Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid," IEEE Transactions on energy conversion, vol. 21, no. 1, pp. 130-135, 2006. [23] Y. Libin et al., "A New Theory of Reactive Power Control of Grid Connected PV Inverter," in 2015 International Conference on Intelligent Transportation, Big Data and Smart City, 19-20 Dec. 2015 2015, pp. 35-38, doi: 10.1109/ICITBS.2015.15. [24] S. Vadi, F. B. Gürbüz, R. Bayindir, and E. Hossain, "Design and Simulation of a Grid Connected Wind Turbine with Permanent Magnet Synchronous Generator," in 2020 8th International Conference on Smart Grid (icSmartGrid), 17-19 June 2020, pp. 169-175, doi: 10.1109/icSmartGrid49881.2020.9144762. [25] A. Zhaksylyk et al., "Review of Active Front-End Rectifiers in EV DC Charging Applications," Batteries, vol. 9, no. 3, p. 150, 2023. [26] P. Alemi and D. C. Lee, "Power loss comparison in two- and three-level PWM converters," in 8th International Conference on Power Electronics - ECCE Asia, 30 May-3 June 2011 2011, pp. 1452-1457, doi: 10.1109/ICPE.2011.5944455. [27] M. Ikonen, O. Laakkonen, and M. Kettunen, "Two-level and three-level converter comparison in wind power application," ed, 2005. [28] J. Lettl, J. Bauer, and L. Linhart, "Comparison of different filter types for grid connected inverter," PIERS Proceedings, Marrakesh, Morocco, 2011. [29] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-Current-Feedback Active Damping With Reduced Computation Delay for Improving Robustness of LCL-Type Grid-Connected Inverter," IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414-3427, 2014, doi: 10.1109/TPEL.2013.2279206. [30] J. Xu, S. Xie, and T. Tang, "Active Damping-Based Control for Grid-Connected $LCL$ -Filtered Inverter With Injected Grid Current Feedback Only," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4746-4758, 2014, doi: 10.1109/TIE.2013.2290771. [31] K. H. Ahmed, S. J. Finney, and B. W. Williams, "Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation," in 2007 Compatibility in Power Electronics, 29 May-1 June 2007, pp. 1-9, doi: 10.1109/CPE.2007.4296511. [32] K. A. E. W. Hamza, H. Linda, and L. Cherif, "LCL filter design with passive damping for photovoltaic grid connected systems," in IREC2015 The Sixth International Renewable Energy Congress, 24-26 March 2015 2015, pp. 1-4, doi: 10.1109/IREC.2015.7110945. [33] M. Liserre, F. Blaabjerg, and A. Dell'Aquila, "Step-by-step design procedure for a grid-connected three-phase PWM voltage source converter," International Journal of Electronics - INT J ELECTRON, vol. 91, pp. 445-460, 08/01 2004, doi: 10.1080/00207210412331306186. [34] M. Liserre, F. Blaabjerg, and S. Hansen, "Design and control of an LCL-filter-based three-phase active rectifier," IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281-1291, 2005, doi: 10.1109/TIA.2005.853373. [35] M. A. Elsaharty and H. A. Ashour, "Passive L and LCL filter design method for grid-connected inverters," in 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), 20-23 May 2014 2014, pp. 13-18, doi: 10.1109/ISGT-Asia.2014.6873756. [36] S. L. Sanjuan, "Voltage oriented control of three-phase boost PWM converters," Chalmers University of Technology, 2010. [37] F. Tlili and F. Bacha, "Voltage Oriented Control of Three Phase Bidirectional AC/DC Converter," in 2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC), 20-22 Dec. 2021 2021, pp. 295-300, doi: 10.1109/SCC53769.2021.9768390. [38] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, "Direct power control of PWM converter without power-source voltage sensors," IEEE Transactions on Industry Applications, vol. 34, no. 3, pp. 473-479, 1998, doi: 10.1109/28.673716. [39] S. Yan, Y. Yang, S. Hui, and F. Blaabjerg, "A review on direct power control of pulsewidth modulation converters," IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11984-12007, 2021. [40] A. M. Razali and M. A. Rahman, "Virtual grid flux oriented control method for front-end three phase boost type voltage source rectifier," in 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 29 April-2 May 2012 2012, pp. 1-4, doi: 10.1109/CCECE.2012.6334922. [41] A. M. Razali, M. A. Rahman, and N. A. Rahim, "Real-time implementation of d-q control for grid connected three phase voltage source converter," in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2014 2014, pp. 1733-1739, doi: 10.1109/IECON.2014.7048736. [42] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marques, "Virtual-flux-based direct power control of three-phase PWM rectifiers," IEEE Transactions on Industry Applications, vol. 37, no. 4, pp. 1019-1027, 2001, doi: 10.1109/28.936392. [43] A. M. Razali, M. Rahman, G. George, and N. A. Rahim, "Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC–DC converter," IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1189-1200, 2014. [44] H. Zhang, X. Zhu, J. Shi, L. Tan, C. Zhang, and K. Hu, "Study on PWM Rectifier Without Grid Voltage Sensor Based on Virtual Flux Delay Compensation Algorithm," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 849-862, 2019, doi: 10.1109/TPEL.2018.2815019. [45] M. Malinowski, M. P. Kazmierkowski, and A. M. Trzynadlowski, "A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives," IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1390-1396, 2003, doi: 10.1109/TPEL.2003.818871. [46] G. Giglia, M. Pucci, C. Serporta, and G. Vitale, "Experimental comparison of three-phase distributed generation systems based on VOC and DPC control techniques," in 2007 European Conference on Power Electronics and Applications, 2-5 Sept. 2007 2007, pp. 1-12, doi: 10.1109/EPE.2007.4417656. [47] F. Sadeque, J. Benzaquen, A. Adib, and B. Mirafzal, "Direct Phase-Angle Detection for Three-Phase Inverters in Asymmetrical Power Grids," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 520-528, 2021, doi: 10.1109/JESTPE.2020.2977398. [48] S. Golestan, J. M. Guerrero, and J. C. Vasquez, "Three-Phase PLLs: A Review of Recent Advances," IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1894-1907, 2017, doi: 10.1109/TPEL.2016.2565642. [49] Delta,AFE2000 Catalogue. [50] Yaskawa,D1000 Catalogue. [51] A. Bechouche, D. O. Abdeslam, H. Seddiki, and K. Mesbah, "Adaptive ac filter parameters identification of three-phase PWM rectifiers," in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2014 2014, pp. 1188-1193, doi: 10.1109/IECON.2014.7048653. [52] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, "Decoupled Double Synchronous Reference Frame PLL for Power Converters Control," IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 584-592, 2007, doi: 10.1109/TPEL.2006.890000. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89074 | - |
dc.description.abstract | 回生轉換器(Regenerative converter)因其雙向功率流控制、功率因數調節、低電流諧波等優點,被廣泛應用於高功率伺服馬達驅動設備。在現今許多工業規範對於電能使用皆有嚴格要求的環境下,回生轉換器已成為取代傳統二極體橋式轉換器的首選。
傳統回生轉換器控制方法,必須加裝電壓感測器在電網側以獲得電網電壓相位資訊,並且確保電壓感測線與轉換器輸出在相同相位上,否則轉換器會根據錯誤的相位進行切換,進而導致過電流的問題產生。然而在實際應用中電壓感測三相線錯接是一個常見的問題,為解決此問題本文提出基於轉換器輸出側電壓的控制方法。透過本文提出之控制方法可將電壓感測器與輸出接口進行整合,以避免電壓感測線錯接之問題。 為了對回升轉換器控制方法進行驗證,本文透過 3KW 馬達負載機對回生轉換器進行各種負載狀況的實驗,並將其與外接相電壓感測的控制方法進行暫態和穩態性能比較。經由實驗驗證,本文提出之控制方法對比外接電壓控制架構具有相近的控制性能,並且符合 IEC-61000-3-2 Class A 之電流諧波規範。 | zh_TW |
dc.description.abstract | The regenerative converter has advantages of bidirectional power flow control, power factor regulation, and low current harmonics. It has been widely applied in high-power servo motor drives. Considering the industrial application with strict power usage requirement, the regenerative converter has become the preferred candidate comparing to traditional diode-based converters.
Conventional control methods for regenerative converters require three voltage sensors connected to the grid side in order to obtain instantaneous voltage feedback for regenerative control. It is crucial that the voltage sensing power line should be the same phase with respect to the converter output line. Otherwise, the converter can be unstable due to the incorrect phase information. For practical applications, the misconnection of the voltage sensor phase line and gird phase is a common problem. In this case, this paper proposes a grid control system by integrating the voltage sensor inside the inverter output. By directly connecting the converter output phase voltage to the grid, the voltage sensor line misconnection can be avoided. Based on the converter's output voltage to address this issue. Experiments are conducted based on a 3 kW motor load machine under various load conditions to validate the proposed control method. Experimental results demonstrate that the proposed control method exhibits similar control performance to the traditional control system with outside voltage sensors. The proposed regenerative converter also complies with the IEC-61000-3-2 Class A specifications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:01:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T17:01:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 國立台灣大學碩士學位論文 口試委員會審定書 i
中文摘要 ii ABSTRACT iii 目錄 v 表目錄 ix 圖目錄 x 符號列表 xvi 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 煞車能回收方式 3 1.2.2 主動式轉換器硬體拓樸 5 1.2.3 濾波器選配 8 1.2.4 回生轉換器控制演算法 10 1.2.5 相位偵測方法 15 1.3 研究目的 17 1.3.1 回生轉換器控制 18 1.3.2 輸出側電壓感測演算法 18 1.3.3 輸出側電壓感測控制與原先控制架構比較 18 1.4 論文大綱 19 第2章 回生轉換器控制 20 2.1 鎖相迴路設計 20 2.2 電流控制迴路設計 23 2.2.1 電流控制迴路模型推導 24 2.2.2 電流控制迴路控制器設計 26 2.3 電壓控制迴路設計 28 2.3.1 電壓控制迴路模型推導 29 2.3.2 電壓控制迴路控制器設計 30 2.3.3 電壓控制迴路穩定度分析 32 2.4 回生轉換器控制模擬 33 2.4.1 鎖相迴路模擬 34 2.4.2 電流控制迴路模擬 38 2.4.3 電壓控制迴路模擬 39 2.4.4 負載切換測試模擬 41 2.5 回生轉換器控制實驗 45 2.5.1 鎖相迴路實驗 47 2.5.2 電流控制迴路實驗 49 2.5.3 電壓控制迴路實驗 51 2.5.4 負載切換測試實驗 52 第3章 回生轉換器輸出側電壓感測控制 56 3.1 電壓感測線錯接與電壓相位分析 57 3.2 輸出側電壓感測控制架構 60 3.2.1 輸出側感測控制原理 60 3.2.2 估測器設計 61 3.2.3 估測器參數敏感度分析 63 3.3 輸出側電壓感測控制模擬 67 3.3.1 估測器模擬驗證 68 3.3.2 輸出側電壓感測控制可控性驗證模擬 69 3.3.3 電壓迴路控制性能模擬比較 70 3.4 輸出側電壓感測控制實驗 72 3.4.1 估測器實驗驗證 73 3.4.2 輸出側電壓感測控制可控性驗證實驗 74 3.4.3 暫態性能比較 75 3.4.4 穩態性能比較 79 3.4.5 並網負載切換測試實驗 84 3.4.6 輸出側電壓感側控制實驗總結 86 第4章 結論與未來工作 90 4.1 結論 90 4.1.1 回生轉換器控制 90 4.1.2 輸出側電壓感測控制 90 4.2 未來工作 91 4.2.1 輸出濾波器參數估測 91 4.2.2 鎖相迴路改善 91 參考文獻 92 | - |
dc.language.iso | zh_TW | - |
dc.title | 伺服應用三相直流交流電網回生轉換器設計 | zh_TW |
dc.title | Design of three-phase DC-AC regenerative converter for servo applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳耀銘;劉添華;李宇修 | zh_TW |
dc.contributor.oralexamcommittee | Yaow-Ming Chen;Tian-Hua Liu;Yu-Hsiu Lee | en |
dc.subject.keyword | 主動式轉換器,電網回充,電壓導向控制,電壓估測演算法, | zh_TW |
dc.subject.keyword | Active converter,Grid regeneration,Voltage-oriented control,Grid voltage estimation, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202303329 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。