Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author吳逸鈞zh_TW
dc.contributor.authorYi-Chun Wuen
dc.date.accessioned2023-08-16T17:01:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] J. Rosero, J. Cusido, A. Garcia, J. Ortega, and L. Romeral, "Broken bearings and eccentricity fault detection for a permanent magnet synchronous motor," in IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 2006: IEEE, pp. 964-969.
[2] Y. Chen, S. Liang, W. Li, H. Liang, and C. Wang, "Faults and diagnosis methods of permanent magnet synchronous motors: A review," Applied Sciences, vol. 9, no. 10, p. 2116, 2019.
[3] M. Krichen, N. B. Hadj, M. Chaieb, and R. Neji, "Effects of Airgap Static Eccentricity in Permanent Magnet Synchronous Motors by Means of Finite Element Analysis," in 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), 2020: IEEE, pp. 422-427.
[4] B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, "Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors," IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4727-4739, 2009, doi: 10.1109/tie.2009.2029577.
[5] J. Hong, S. B. Lee, C. Kral, and A. Haumer, "Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance," IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2605-2612, 2011.
[6] B. Ebrahimi and J. Faiz, "Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity," IET electric power applications, vol. 4, no. 1, pp. 53-66, 2010.
[7] Z. He, W. Cheng, J. Xia, W. Wen, and M. Li, "Vibration source signal separation of rotating machinery equipment and robot bearings based on low rank constraint," Applied Sciences, vol. 11, no. 11, p. 5250, 2021.
[8] B. M. Ebrahimi, M. J. Roshtkhari, J. Faiz, and S. V. Khatami, "Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis,", IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 2041-2052, Apr 2014, doi: 10.1109/Tie.2013.2263777.
[9] B. M. Ebrahimi, J. Faiz, and B. N. Araabi, "Pattern identification for eccentricity fault diagnosis in permanent magnet synchronous motors using stator current monitoring," IET Electric Power Applications, vol. 4, no. 6, 2010, doi: 10.1049/iet-epa.2009.0149.
[10] B. M. Ebrahimi and J. Faiz, "Configuration Impacts on Eccentricity Fault Detection in Permanent Magnet Synchronous Motors,", IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 903-906, Feb 2012, doi: 10.1109/Tmag.2011.2172977.
[11] J. P.-L. R. Puche-Panadero, J. Roger-Folch, M. Pineda-Sanchez, "Diagnosis of eccentricity based on the Hilbert transform of the startup transient current," 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cargese, France, pp. 1-6, 2009, doi: 10.1109/DEMPED.2009.5292787.
[12] B. M. Ebrahimi, J. Faiz, M. Javan-Roshtkhari, and A. Z. Nejhad, "Static Eccentricity Fault Diagnosis in Permanent Magnet Synchronous Motor Using Time Stepping Finite Element Method,", IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4297-4300, Nov 2008, doi: 10.1109/Tmag.2008.2001534.
[13] J.-H. Jung, J.-J. Lee, and B.-H. Kwon, "Online Diagnosis of Induction Motors Using MCSA," IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1842-1852, 2006, doi: 10.1109/tie.2006.885131.
[14] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, "Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip," IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 52-59, 2009, doi: 10.1109/tec.2008.2003207.
[15] A. Bellini, G. Franceschini, and C. Tassoni, "Monitoring of induction machines by maximum covariance method for frequency tracking," IEEE Transactions on Industry Applications, vol. 42, no. 1, pp. 69-78, 2006.
[16] H. G. Luo, X. J. Fang, and B. Ertas, "Hilbert Transform and Its Engineering Applications,", Aiaa J, vol. 47, no. 4, pp. 923-932, Apr 2009, doi: 10.2514/1.37649.
[17] S.-C. Pei and S.-B. Jaw, "Computation of discrete Hilbert transform through fast Hartley transform," IEEE transactions on circuits and systems, vol. 36, no. 9, pp. 1251-1252, 1989.
[18] S. C. Pei and M. H. Yeh, "Discrete fractional Hilbert transform," (in English), IEEE Transactions on Circuits and Systems Ii-Analog and Digital Signal Processing, vol. 47, no. 11, pp. 1307-1311, Nov 2000. [Online]. Available: <Go to ISI>://WOS:000165390100018.
[19] H. Khelfi, S. Hamouda, and S. Hamdani, "Dynamic Eccentricity Faut Diagnosis for Inverter-Fed Induction Motor Using Stator Current Temporal Envelope Estimation," in 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE), 2022: IEEE, pp. 1-6.
[20] H. Khelfi, S. Hamdani, and Y. Chibani, "Temporal Envelope Estimation of Stator Current by Peaks Detection for IM Fault Diagnosis," in 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 2019: IEEE, pp. 274-279.
[21] P. K. Mohanty, M. Reza, P. Kumar, and P. Kumar, "Implementation of cubic spline interpolation on parallel skeleton using pipeline model on CPU-GPU cluster," in 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016: IEEE, pp. 747-751.
[22] S. Zhang et al., "Model-based analysis and quantification of bearing faults in induction machines," IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2158-2170, 2020.
[23] S. Poddar and M. L. Chandravanshi, "Ball bearing fault detection using vibration parameters," International Journal of Engineering Research & Technology, vol. 2, no. 12, pp. 1239-1244, 2013.
[24] R. B. Randall and J. Antoni, "Rolling element bearing diagnostics—A tutorial," Mechanical Systems and Signal Processing, vol. 25, no. 2, pp. 485-520, 2011, doi: 10.1016/j.ymssp.2010.07.017.
[25] S. A. McInerny and Y. Dai, "Basic vibration signal processing for bearing fault detection,", IEEE Transactions on Education, vol. 46, no. 1, pp. 149-156, Feb 2003, doi: 10.1109/Te.2002.808234.
[26] S. Kim, D. An, and J.-H. Choi, "Diagnostics 101: A Tutorial for Fault Diagnostics of Rolling Element Bearing Using Envelope Analysis in MATLAB," Applied Sciences, vol. 10, no. 20, 2020, doi: 10.3390/app10207302.
[27] N. Sawalhi, R. B. Randall, and H. Endo, "The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis,", Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2616-2633, Aug 2007, doi: 10.1016/j.ymssp.2006.12.002.
[28] W. A. Smith and R. B. Randall, "Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study," Mechanical systems and signal processing, vol. 64, pp. 100-131, 2015.
[29] P. McFadden and J. Smith, "Vibration monitoring of rolling element bearings by the high-frequency resonance technique—a review," Tribology international, vol. 17, no. 1, pp. 3-10, 1984.
[30] P. D. Mcfadden and J. D. Smith, "Model for the Vibration Produced by a Single Point-Defect in a Rolling Element Bearing,", Journal of Sound and Vibration, vol. 96, no. 1, pp. 69-82, 1984, doi: Doi 10.1016/0022-460x(84)90595-9.
[31] S. Tyagi and S. K. Panigrahi, "An improved envelope detection method using particle swarm optimisation for rolling element bearing fault diagnosis," (in English), Journal of Computational Design and Engineering, vol. 4, no. 4, pp. 305-317, Oct 2017, doi: 10.1016/j.jcde.2017.05.002.
[32] Y.-T. Sheen, "An analysis method for the vibration signal with amplitude modulation in a bearing system," Journal of sound and vibration, vol. 303, no. 3-5, pp. 538-552, 2007.
[33] E. Bechhoefer, M. Kingsley, and P. Menon, "Bearing envelope analysis window selection using spectral kurtosis techniques," in 2011 IEEE Conference on Prognostics and Health Management, 2011: IEEE, pp. 1-6.
[34] J. Antoni, "Fast computation of the kurtogram for the detection of transient faults," Mechanical Systems and Signal Processing, vol. 21, no. 1, pp. 108-124, 2007.
[35] C. N. Komgom, N. W. Mureithi, and A. A. Lakis, "Application of time synchronous averaging, spectral kurtosis and support vector machines for bearing fault identification," in ASME Pressure Vessels and Piping Conference, 2008, vol. 48302, pp. 137-146.
[36] N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1998.
[37] W.-C. Tsao, Y.-F. Li, D. Du Le, and M.-C. Pan, "An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis," Measurement, vol. 45, no. 6, pp. 1489-1498, 2012.
[38] Q. Du and S. Yang, "Application of the EMD method in the vibration analysis of ball bearings," Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2634-2644, 2007.
[39] C. Luo, M. Jia, and Y. Wen, "The diagnosis approach for rolling bearing fault based on Kurtosis criterion EMD and Hilbert envelope spectrum," in 2017 IEEE 3rd information technology and mechatronics engineering conference (ITOEC), 2017: IEEE, pp. 692-696.
[40] D. Siegel, H. Al-Atat, V. Shauche, L. Liao, J. Snyder, and J. Lee, "Novel method for rolling element bearing health assessment—A tachometer-less synchronously averaged envelope feature extraction technique," Mechanical Systems and Signal Processing, vol. 29, pp. 362-376, 2012.
[41] P. McFadden and M. Toozhy, "Application of synchronous averaging to vibration monitoring of rolling element bearings," Mechanical Systems and Signal Processing, vol. 14, no. 6, pp. 891-906, 2000.
[42] S. Braun, "The extraction of periodic waveforms by time domain averaging," Acta Acustica united with Acustica, vol. 32, no. 2, pp. 69-77, 1975.
[43] J. M. Ha, B. D. Youn, H. Oh, B. Han, Y. Jung, and J. Park, "Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines," Mechanical Systems and Signal Processing, vol. 70, pp. 161-175, 2016.
[44] S. Braun, "The synchronous (time domain) average revisited," Mechanical Systems and Signal Processing, vol. 25, no. 4, pp. 1087-1102, 2011.
[45] W. Feng, C. Wang, X. Chen, Y. Shi, M. Jiang, and D. Wang, "Filter Realization of the Time-Domain Average Denoising Method for a Mechanical Signal," Shock and Vibration, vol. 2021, pp. 1-13, 2021.
[46] K. Christian, N. Mureithi, A. Lakis, and M. Thomas, "On the use of time synchronous averaging, independent component analysis and support vector machines for bearing fault diagnosis," in First international conference on industrial risk engineering, 2007.
[47] P. McFadden, "A revised model for the extraction of periodic waveforms by time domain averaging," Mechanical systems and signal processing, vol. 1, no. 1, pp. 83-95, 1987.
[48] 洪聖崴, 非接觸式電氣監控硬體於永磁馬達在線力矩, 效率與故障情況監 控, 碩士論文, 國立台灣大學, 2022.
[49] R. N. Toma, A. E. Prosvirin, and J.-M. Kim, "Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers," Sensors, vol. 20, no. 7, p. 1884, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89073-
dc.description.abstract機械故障為永磁同步馬達常見的故障種類,以傳動軸承偏心及軸承內部損壞兩者最為常見,這會使馬達運轉效率降低並有最終有運轉安全上的疑慮,因此馬達驅動器有必要透過運轉即時故障診斷提早發現問題,預約保養維修。
本論文首先提出用馬達相電流感測訊號,藉由電流區域極值代替傳統包絡線(envelope)計算的偏心故障診斷方法,目的是將演算法計算量降低,並且透過區域極值的先後順序判斷計算特徵頻率振幅,方便在微控制器上進行即時計算。同時因為區域極值的特徵頻率與轉速無關,此方法亦改善原先因頻率解析度的限制只能在定轉速診斷的問題。
本論文也針對軸承內部損傷,利用加速規量測振動訊號來進行分析改善,故障診斷是藉由時間同步平均(time synchronous averaging, TSA)方式降低包絡線上特定頻率振動的干擾,使在頻譜上軸承特徵頻率的振幅能更明顯,在分析上比較直觀。
為了驗證診斷的性能,診斷平台是使用100W馬達進行實驗測試,從實驗結果可以證實,所提出偏心診斷方法在電流區域極值與包絡線的特徵頻率振幅誤差在3.2%以內,且在微控制器上能在30us內計算完成,此外軸承損傷診斷實驗上也驗證用所提出方式可以有效診斷出軸承損傷,在有偏心影響下也能照樣分析,且能夠降低偏心振動在頻譜上的振幅。
zh_TW
dc.description.abstractMechanical faults are common types of faults in permanent magnet synchronous motors, with eccentricity in the drive bearing and internal bearing damage being the most common. These faults can lead to a decrease in motor efficiency and eventually raise concerns about operational safety. Therefore, it is necessary for motor drives to employ real-time fault diagnosis to detect problems early and schedule maintenance and repairs.
This thesis proposes a fault diagnosis method for eccentricity faults using motor phase current sensing signals. Instead of using the traditional envelope calculation, the method utilizes the local extreme values of the current in specific regions. The objective is to reduce the computational complexity of the algorithm and determine the computed feature frequency amplitudes based on the order of local extreme values. This facilitates real-time computation on microcontrollers. Additionally, since the characteristic frequencies of the local extreme values are independent of motor speed, this method overcomes the limitation of frequency resolution for diagnosing faults only at a fixed speed.
The thesis also focuses on internal bearing damage and proposes an analysis improvement using acceleration measurements of vibration signals. The fault diagnosis utilizes time synchronous averaging to reduce the interference from vibration at specific frequencies on the envelope. This enhances the visibility of bearing characteristic frequencies in the spectrum and provides a more intuitive analysis.
To verify the performance of the diagnosis, experiments were conducted on a 100W motor using a diagnostic platform. The results confirm that the proposed eccentricity diagnosis method achieves an error within 3.2% for the feature frequency amplitudes between the current local extreme values and the envelope. Furthermore, the computation can be completed within 30us on a microcontroller. In addition, the experiments for bearing damage diagnosis validate the effectiveness of the proposed method in detecting bearing faults, even under the influence of eccentricity, while reducing the amplitude of eccentric vibration in the spectrum.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:01:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:01:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents國立台灣大學碩士學位論文 口試委員會審定書 i
中文摘要 iii
ABSTRACT v
目錄 vii
表目錄 xi
圖目錄 xiii
符號列表 xix
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 馬達偏心簡介 2
1.2.2 偏心電流頻譜診斷 5
1.2.3 偏心電流包絡線診斷 10
1.2.4 軸承損壞特徵頻率 14
1.2.5 軸承特徵頻率擷取 18
1.2.6 時間同步平均 21
1.3 研究目的 23
1.3.1 馬達偏心在線即時診斷實現 24
1.3.2 馬達偏心診斷應用性提升 24
1.3.3 馬達軸承損壞診斷性能提升 24
1.4 論文大綱 25
第2章 馬達偏心即時診斷 27
2.1 包絡線特徵頻率 28
2.2 區域極值近似包絡線 32
2.3 在線區域極值判斷 37
2.3.1 低通濾波器設計 37
2.3.2 滑動視窗找極值 39
2.3.3 多極值判斷 40
2.4 特徵頻率振幅計算 42
2.4.1 在線特徵頻率振幅計算 42
2.4.2 即時特徵頻率振幅計算 44
2.4.3 計算複雜度比較 45
2.4.4 雜訊敏感度比較 46
2.5 變速度 47
2.6 偏心診斷實驗 49
2.6.1 偏心診斷實驗平台 49
2.6.2 包絡線診斷驗證 53
2.6.3 包絡線 vs 區域極值 55
2.6.4 即時演算法定轉速驗證 58
2.6.5 即時演算法任意轉速驗證 62
2.6.6 即時演算法變轉速驗證 64
2.6.7 轉動不平衡 66
2.6.8 在線計算時間 69
第3章 馬達軸承損傷診斷 71
3.1 軸承故障特徵頻率模型 71
3.2 軸承損傷診斷 73
3.2.1 帶通濾波器頻寬選取 74
3.2.2 時間同步平均原理 75
3.2.3 時間同步平均去除轉速頻率 79
3.3 計算複雜度 82
3.4 軸承診斷實驗 82
3.4.1 軸承損傷實驗平台 82
3.4.2 時間同步平均驗證 85
3.4.3 外環軸承故障診斷 86
3.4.4 未知損傷軸承診斷 89
3.4.5 外環軸承故障+偏心診斷 90
第4章 結論及未來工作 93
4.1 結論 93
4.1.1 馬達偏心在線即時診斷 93
4.1.2 馬達偏心診斷應用性 93
4.1.3 馬達軸承損傷診斷 94
4.2 未來工作 94
4.2.1 偏心診斷不同馬達驗證 94
4.2.2 電流訊號軸承損傷診斷 95
參考文獻 96
-
dc.language.isozh_TW-
dc.subject馬達偏心診斷zh_TW
dc.subject區域極值zh_TW
dc.subject馬達軸承故障診斷zh_TW
dc.subject即時計算zh_TW
dc.subject時間同步平均zh_TW
dc.subjectbearing fault diagnosisen
dc.subjectlocal extremaen
dc.subjectreal-time calculationen
dc.subjectEccentricity diagnosisen
dc.subjecttime synchronous averagingen
dc.title永磁同步馬達偏心診斷與滾珠軸承故障診斷zh_TW
dc.titleEccentricity Diagnosis and Ball Bearing Fault Diagnosis of Permanent Magnet Synchronous Motoren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周柏寰;仲維德zh_TW
dc.contributor.oralexamcommitteePo-Huan Chou;Wei-Der Chungen
dc.subject.keyword馬達偏心診斷,馬達軸承故障診斷,區域極值,即時計算,時間同步平均,zh_TW
dc.subject.keywordEccentricity diagnosis,bearing fault diagnosis,local extrema,real-time calculation,time synchronous averaging,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202303275-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved