Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89070
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林達德zh_TW
dc.contributor.advisorTa-Te Linen
dc.contributor.author黃少政zh_TW
dc.contributor.authorShao-Zheng Huangen
dc.date.accessioned2023-08-16T17:00:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAchour, B., Belkadi, M., Filali, I., Laghrouche, M., and Lahdir, M. 2020. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN). Biosystems Engineering, 198, 31-49.
Armstrong, D. 1994. Heat stress interaction with shade and cooling. Journal of dairy science, 77(7), 2044-2050.
Arshad, J., Rehman, A. U., Othman, M. T. B., Ahmad, M., Tariq, H. B., Khalid, M. A., Moosa, M. A. R., Shafiq, M., and Hamam, H. 2022. Deployment of wireless sensor network and iot platform to implement an intelligent animal monitoring system. Sustainability, 14(10), 6249.
Awasthi, A., Awasthi, A., Riordan, D., and Walsh, J. 2016. Non-invasive sensor technology for the development of a dairy cattle health monitoring system. Computers, 5(4), 23.
Bohmanova, J., Misztal, I., and Cole, J. B. 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of dairy science, 90(4), 1947-1956.
Buffington, D., Collazo-Arocho, A., Canton, G., Pitt, D., Thatcher, W., and Collier, R. 1981. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Transactions of the ASAE, 24(3), 711-0714.
Burfeind, O., Suthar, V., and Heuwieser, W. 2012. Effect of heat stress on body temperature in healthy early postpartum dairy cows. Theriogenology, 78(9), 2031-2038.
Burfeind, O., Suthar, V., Voigtsberger, R., Bonk, S., and Heuwieser, W. 2014. Body temperature in early postpartum dairy cows. Theriogenology, 82(1), 121-131.
Cangar, Ö., Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Mee, J., and Berckmans, D. 2008. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Computers and Electronics in Agriculture, 64(1), 53-60.
Capdeville, J., and Veissier, I. 2001. A method of assessing welfare in loose housed dairy cows at farm level, focusing on animal observations. Acta Agriculturae Scandinavica, Section A-Animal Science, 51(S30), 62-68.
Choi, Y., Kim, N., Hwang, S., and Kweon, I. S. 2016. Thermal image enhancement using convolutional neural network. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS).
Collier, R. J., Baumgard, L. H., Zimbelman, R. B., and Xiao, Y. 2019. Heat stress: physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12-19.
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, K. R., and Kumar, R. 2016. Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3), 260-268.
Davis, S., Gibson, D., and Clark, R. 1984. The effect of bovine ephemeral fever on milk production. Australian Veterinary Journal, 61(4), 128-130.
DeGaris, P. J., and Lean, I. J. 2008. Milk fever in dairy cows: A review of pathophysiology and control principles. The veterinary journal, 176(1), 58-69.
Dutta, R., Smith, D., Rawnsley, R., Bishop-Hurley, G., Hills, J., Timms, G., and Henry, D. 2015. Dynamic cattle behavioural classification using supervised ensemble classifiers. Computers and Electronics in Agriculture, 111, 18-28.
Fregonesi, J. A., and Leaver, J. D. 2001. Behaviour, performance and health indicators of welfare for dairy cows housed in strawyard or cubicle systems. Livestock production science, 68(2-3), 205-216.
Glatz-Hoppe, J., Boldt, A., Spiekers, H., Mohr, E., and Losand, B. 2020. Relationship between milk constituents from milk testing and health, feeding, and metabolic data of dairy cows. Journal of dairy science, 103(11), 10175-10194.
Guo, W., Shi, Y., Wang, S., and Xiong, N. N. 2019. An unsupervised embedding learning feature representation scheme for network big data analysis. IEEE Transactions on Network Science and Engineering, 7(1), 115-126.
He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA.
Heinola, K., Latvala, T., Raussi, S., Kauppinen, T., and Niemi, J. 2020. Kuluttajanäkökulmia eläinten hyvinvointimerkin kehittämiseen. Suomen Maataloustieteellisen Seuran Tiedote(38), 1–12-11–12.
Herbut, P., Angrecka, S., and Walczak, J. 2018. Environmental parameters to assessing of heat stress in dairy cattle—a review. International Journal of Biometeorology, 62, 2089-2097.
Hermans, A., Beyer, L., & Leibe, B. (2017). In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737.
Hibbs, J. (1950). Milk fever (parturient paresis) in dairy cows—a review. Journal of dairy science, 33(10), 758-789.
Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network. Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015, Proceedings 3, Copenhagen, Denmark.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Ivašić-Kos, M., Krišto, M., and Pobar, M. 2019. Human detection in thermal imaging using YOLO. Proceedings of the 2019 5th International Conference on Computer and Technology Applications.
Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., Warner, R. D., Poblete, T., and Jongman, E. C. 2019. Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals, 9(12), 1089.
Kadzere, C. T., Murphy, M., Silanikove, N., and Maltz, E. 2002. Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91.
Kumar, A., Kamboj, M., Chandra, S., Kumar, C., Singh, D., and Rather, H. A. 2018. Physiological parameters of cattle and buffalo in different seasons under different housing modification systems-A review. Agricultural Reviews, 39(1), 62-68.
López-Gatius, F., Santolaria, P., Mundet, I., and Yániz, J. 2005. Walking activity at estrus and subsequent fertility in dairy cows. Theriogenology, 63(5), 1419-1429.
Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, M., and Mononen, J. 2009. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Applied animal behaviour science, 119(1-2), 32-38.
Milan, H., Maia, A., and Gebremedhin, K. 2016. Device for measuring respiration rate of cattle under field conditions. Journal of Animal Science, 94(12), 5434-5438.
Pastell, M., Aisla, A.-M., Hautala, M., Poikalainen, V., Praks, J., Veermäe, I., and Ahokas, J. 2006. Contactless measurement of cow behavior in a milking robot. Behavior research methods, 38, 479-486.
Pastell, M., Kaihilahti, J., Aisla, A.-M., Hautala, M., Poikalainen, V., and Ahokas, J. 2007. A system for contact-free measurement of respiration rate of dairy cows. J. Prec. Livest. Farm, 7, 105-109.
Peng, D., Chen, S., Li, G., Chen, J., Wang, J., and Gu, X. 2019. Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. International Journal of Biometeorology, 63, 327-336.
Rousing, T., Bonde, M., and Sorensen, J. 2000. Indicators for the assessment of animal welfare in a dairy cattle herd with a cubicle housing system. PUBLICATION-EUROPEAN ASSOCIATION FOR ANIMAL PRODUCTION, 102, 37-44.
Saeed, N., King, N., Said, Z., and Omar, M. A. 2019. Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning. Infrared Physics & Technology, 102, 103048.
Schütz, K. E., Cox, N. R., and Matthews, L. R. 2008. How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation. Applied animal behaviour science, 114(3-4), 307-318.
Schirmann, K., Weary, D., Heuwieser, W., Chapinal, N., Cerri, R., and Von Keyserlingk, M. 2016. Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. Journal of dairy science, 99(12), 9917-9924.
Schroff, F., Kalenichenko, D., and Philbin, J. 2015. Facenet: A unified embedding for face recognition and clustering. Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA.
Shojaeipour, A., Falzon, G., Kwan, P., Hadavi, N., Cowley, F. C., and Paul, D. 2021. Automated muzzle detection and biometric identification via few-shot deep transfer learning of mixed breed cattle. Agronomy, 11(11), 2365.
Sikaroudi, M., Ghojogh, B., Safarpoor, A., Karray, F., Crowley, M., and Tizhoosh, H. R. 2020. Offline versus online triplet mining based on extreme distances of histopathology patches. Advances in Visual Computing: 15th International Symposium, ISVC 2020, Proceedings, Part I 15, San Diego, CA, USA.
Snell, J., Swersky, K., and Zemel, R. 2017. Prototypical networks for few-shot learning. Advances in neural information processing systems, 30.
Spiers, D., Spain, J., Sampson, J., and Rhoads, R. 2004. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. Journal of Thermal Biology, 29(7-8), 759-764.
Stankovski, S., Ostojic, G., Senk, I., Rakic-Skokovic, M., Trivunovic, S., and Kucevic, D. 2012. Dairy cow monitoring by RFID. Scientia Agricola, 69, 75-80.
Stewart, M., Wilson, M., Schaefer, A., Huddart, F., and Sutherland, M. 2017. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. Journal of dairy science, 100(5), 3893-3901.
Stygar, A. H., Gómez, Y., Berteselli, G. V., Dalla Costa, E., Canali, E., Niemi, J. K., Llonch, P., and Pastell, M. 2021. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Frontiers in veterinary science, 8, 634338.
Sun, Y., Wang, X., and Tang, X. 2014. Deep learning face representation from predicting 10,000 classes. Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA.
Taigman, Y., Yang, M., Ranzato, M. A., and Wolf, L. 2014. Deepface: Closing the gap to human-level performance in face verification. Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA.
Tao, S., Rivas, R. M. O., Marins, T. N., Chen, Y.-C., Gao, J., and Bernard, J. K. 2020. Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150, 437-444.
Telezhenko, E., Lidfors, L., and Bergsten, C. 2007. Dairy cow preferences for soft or hard flooring when standing or walking. Journal of dairy science, 90(8), 3716-3724.
Uddin, J., McNeill, D. M., Lisle, A. T., and Phillips, C. J. 2020. A sampling strategy for the determination of infrared temperature of relevant external body surfaces of dairy cows. International Journal of Biometeorology, 64, 1583-1592.
Unold, O., Nikodem, M., Piasecki, M., Szyc, K., Maciejewski, H., Bawiec, M., Dobrowolski, P., and Zdunek, M. 2020. IoT-based cow health monitoring system. Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part V.
Vannieuwenborg, F., Verbrugge, S., and Colle, D. 2017. Designing and evaluating a smart cow monitoring system from a techno-economic perspective. 2017 Internet of Things Business Models, Users, and Networks.
Vázquez Diosdado, J. A., Barker, Z. E., Hodges, H. R., Amory, J. R., Croft, D. P., Bell, N. J., and Codling, E. A. 2015. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Animal Biotelemetry, 3(1), 1-14.
Walker, P. J., and Klement, E. 2015. Epidemiology and control of bovine ephemeral fever. Veterinary research, 46, 1-19.
Wang, F.-I., Hsu, A., and Huang, K. 2001. Bovine ephemeral fever in Taiwan. Journal of veterinary diagnostic investigation, 13(6), 462-467.
Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. 2020. Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3), 1-34.
West, J., Mullinix, B., and Bernard, J. 2003. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. Journal of dairy science, 86(1), 232-242.
Xudong, Z., Xi, K., Ningning, F., and Gang, L. 2020. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Computers and Electronics in Agriculture, 178, 105754.
Yang, J., Wang, W., Lin, G., Li, Q., Sun, Y., and Sun, Y. 2019. Infrared thermal imaging-based crack detection using deep learning. Ieee Access, 7, 182060-182077.
Zimbelman, R., Rhoads, R., Rhoads, M., Duff, G., Baumgard, L., and Collier, R. 2009. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. Proceedings of the Southwest Nutrition Conference (ed. RJ Collier), San Antonio, Texas, USA.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89070-
dc.description.abstract本研究的目標是開發一套乳牛健康監測系統,架設多項感測器並利用資料融合與機器學習技術,以實現智慧農業管理的目的。利用小樣本學習演算法於深度學習模型,建立牛臉特徵向量提取模型,監測個體牛隻採食時長。同時,結合牛臉辨識演算法和熱成像監測系統,建立個體乳牛眼睛溫度監測工作模組,並使用輕量化模型進行邊緣運算。開發模型更新自動化演算法,以解決牛隻頻繁更換和淘汰的問題,也降低了訓練模型所需的人力及時間成本。牛眼溫度監測系統採用串流時機選擇演算法,實現自動化監測牛眼溫度,將儲存空間的佔用量減少原本的80百分比。此外,本研究建立了Docker環境,建置多項服務,以收集和整合感測器資訊,架設工作模組之間的通訊管道,使整個系統可以快速重建、管理及更新。在本研究中,整合了計算採食時長的影像監測系統、測量牛眼溫度的熱成像工作模組、監測乳牛呼吸頻率的雷達系統、收集運動行為特徵的慣性測量單元,以及測量環境因素的溫濕度感測器。利用這些感測器收集乳牛在生理現象、運動行為和活動環境等方面的資訊。透過將多重感測器的資訊進行整合,本研究建立乳牛綜合健康指標和熱緊迫診斷平台。這套系統能夠根據不同的指標,對乳牛的健康狀況進行監測和評估。利用移動平均方法減少每日採食時長的雜訊,解決乳牛個體間的差異性,分析其採食狀況是否異常。後續進行多項相關性分析,發現個體牛隻的採食時長與溫濕度指數呈負相關,整體相關係數為0.37,群體牛隻的呼吸頻率則與溫濕度指數呈正相關,相關係數為0.57。除此之外,我們利用非監督式機器學習模型將多重感測資訊進行分類,得到最佳轉折點於THI值70.7及78.0,進一步診斷乳牛的熱緊迫現象的嚴重程度。我們開發了乳牛發情期偵測演算法,建立相關規則並進行實驗優化參數,其F1-score為0.833。最後,將所有資訊呈現於使用者介面上,提供牧場人員快速判讀牧場乳牛的健康狀況。zh_TW
dc.description.abstractThe objective of this study was to develop a dairy cow health information system by deploying multiple sensors and utilizing data fusion and machine learning techniques. The system aimed to establish comprehensive health indicators and a heat stress diagnostic platform for dairy cows, with the purpose of achieving smart agricultural management. A deep learning model was developed using a small sample learning algorithm to extract facial features of cows, allowing for monitoring of individual cow's feeding duration. Additionally, a cow facial recognition algorithm and thermal imaging monitoring system were combined to create an individual cow eye temperature monitoring module, employing lightweight models for edge computing. An automated model updating algorithm was developed to address the frequent replacement and culling of cows, reducing the human and time costs required for model training. The cow eye temperature monitoring system adopted a streaming time selection algorithm, enabling automated monitoring of cow eye temperature and reducing storage space consumption from 1.3GB per day to 260MB. Furthermore, a Docker environment was established in this study to build multiple services for collecting and integrating sensor information. It also facilitated the communication pipeline between different modules, allowing for quick reconstruction, management, and updates of the entire system. The study integrated an image monitoring system for measuring feeding duration, a thermal imaging module for measuring cow eye temperature, a radar system for monitoring cow respiratory rate, an inertial measurement unit for collecting motion behavior characteristics, and temperature and humidity sensors for measuring environmental factors. These sensors were used to collect information on physiological phenomena, motion behavior, and environmental conditions of dairy cows. By integrating the information from multiple sensors, this study established comprehensive health indicators and a heat stress diagnostic platform for dairy cows. The system enabled monitoring and evaluation of the health condition of dairy cows based on different indicators. The use of moving average methods reduced noise and addressed inter-individual variability to analyze whether the feeding behavior of dairy cows was abnormal and establish corresponding indicators. Subsequent correlation analysis revealed a negative correlation coefficient of 0.61 between individual cow feeding duration and the temperature-humidity index (THI), while the respiratory rate of the entire herd showed a positive correlation coefficient of 0.75 with the THI. Furthermore, an unsupervised machine learning model was employed to classify the information from multiple sensors, determining the optimal turning points at THI values of 70.7 and 78.0. This further allowed for the assessment of the severity of heat stress in dairy cows. A heat detection algorithm for dairy cow estrus period was developed, with related rules established and experimental parameter optimization conducted, resulting in an F1-score of 0.833. Finally, all the information was presented on a user interface using Grafana, enabling dairy farm personnel to quickly review the health status of cows on-site.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:00:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:00:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻探討 5
2.1 泌乳牛健康相關指標 5
2.1.1 生理現象指標 6
2.1.2 運動行為指標 7
2.1.3 牧場環境指標 8
2.1.4 牛隻健康監測平台 8
2.2 熱緊迫對泌乳牛的影響 9
2.2.1 熱緊迫對泌乳牛產乳量的影響 10
2.2.2 熱緊迫對泌乳牛行為的影響 11
2.3 泌乳牛監測與分析 12
2.3.1 採食行為監測分析 12
2.3.2 熱成像監測分析 13
2.3.3 呼吸頻率監測分析 14
2.3.4 運動行為監測分析 15
2.4 深度學習 17
2.4.1 深度學習應用於物體辨識 17
2.4.2 深度學習應用於個體臉部辨識 17
2.4.3 小樣本學習 18
第三章 研究方法 20
3.1 研究架構 20
3.2 多重感測資訊 21
3.2.1 多重感測資訊框架 21
3.2.2 資料融合 22
3.2.3 乳牛健康指標 23
3.3 影像監測模組 24
3.3.1 硬體及實驗場域 24
3.3.2 牛臉偵測演算法 26
3.3.3 牛臉辨識演算法 26
3.3.4 牛眼偵測演算法 29
3.3.5 牛臉辨識模型更新自動化 29
3.3.6 熱成像影像處理方法 33
3.3.7 串流時間演算法 33
3.4 呼吸頻率監測模組 34
3.5 慣性測量單元監測模組 36
3.5.1 硬體及實驗場域 36
3.5.2 乳牛發情偵測演算法 36
3.6 系統架構 37
3.6.1 控制系統 37
3.6.2 資料流程系統 38
第四章 結果與討論 40
4.1 牛臉辨識模型 40
4.1.1 小樣本學習訓練結果 40
4.1.2 模型更新自動化 42
4.1.3 個別牛採食時間驗證 43
4.2 熱成像溫度結果 44
4.2.1 牛眼溫度測量系統自動化 44
4.2.2 乳牛溫度測量結果 46
4.3 乳牛健康指標 47
4.3.1 資料收集 47
4.3.2 乳牛採食狀況 57
4.3.3 乳牛熱緊迫現象 61
4.3.4 乳牛發情期的發生 63
4.4 乳牛健康監測平台 67
4.4.1 資料整合 67
4.4.2 平台呈現 68
第五章 結論與建議 72
5.1 結論 72
5.2 建議 74
參考文獻 75
-
dc.language.isozh_TW-
dc.title基於多元感測與機器學習之乳牛泌乳相關健康與行為監測系統之開發zh_TW
dc.titleDevelopment of Dairy Cow Lactation Related Health and Behavior Monitoring System Based on Multi-Sensing and Machine Learningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐濟泰;郭彥甫zh_TW
dc.contributor.oralexamcommitteeJih-Tay Hsu;Yan-Fu Kuoen
dc.subject.keyword健康指標,多重感測資訊,採食監測,熱緊迫分級,發情期偵測,zh_TW
dc.subject.keywordhealth indicators,multiple sensor information,feeding monitoring,heat stress classification,estrus detection,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202303660-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf6.72 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved