Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周錫增zh_TW
dc.contributor.advisorHsi-Tseng Chouen
dc.contributor.authorAngel Cerrada Ramírezzh_TW
dc.contributor.authorAngel Cerrada Ramírezen
dc.date.accessioned2023-08-16T16:57:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] Ben A. Munk. Frequency Selective Surfaces: Theory and Design, chapter 1-2, pages 1–62. John Wiley & Sons, Ltd, 2000.
[2] Baoqin Lin, Lintao Lv, Jianxin Guo, Zhe Liu, Xiang Ji, and Jing Wu. An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface. IEEE Access, 8:82732–82740, 2020.
[3] U. Tan, O. Rabaste, C. Adnet, and J.-P. Ovarlez. On the eclipsing phenomenon with phase codes. In 2019 International Radar Conference (RADAR), pages 1–5, 2019.
[4] Gerard Maral, Michel Bousquet, and Zhili Sun. Satellite communications systems :systems, techniques and technology, chapter 5, pages 189–274. John Wiley & Sons, Ltd, Hoboken, N.J, 6th ed. edition, 2020.
[5] Rudraishwarya Banerjee, Satish Kumar Sharma, Seth W. Waldstein, James M. Downey, Bryan L. Schoenholz, Sarah M. Dever, James A. Nessel, and Sanghamitro Das. A 22–28 ghz polarization-reconfigurable flat-panel 8 × 8 tx/rx phased array antenna with uniquely arranged novel radiating elements for cubesat communication. IEEE Transactions on Antennas and Propagation, 71(5):4138–4152, 2023.
[6] Sanghamitro Das, Satish Kumar Sharma, Seth W. Waldstein, James M. Downey, Bryan L. Schoenholz, Sarah M. Dever, James A. Nessel, and Rudraishwarya Baner-jee. A flat-panel 8 × 8 wideband k-/ka-band dual circularly polarized phased array antenna for cubesat communications. IEEE Transactions on Antennas and Propagation, 71(5):4153–4166, 2023.
[7] Yu Jian Cheng, Jun Wang, and Xiao Liang Liu. 94 ghz substrate integrated waveguide dual-circular-polarization shared-aperture parallel-plate long-slot array antenna with low sidelobe level. IEEE Transactions on Antennas and Propagation, 65(11):5855–5861, 2017.
[8] Chun-Xu Mao, Steven Gao, Yi Wang, Qing-Xin Chu, and Xue-Xia Yang. Dual-band circularly polarized shared-aperture array for c -/ x -band satellite communications. IEEE Transactions on Antennas and Propagation, 65(10):5171–5178, 2017.
[9] Jorge A. Ruiz-Cruz, Mohamed M. Fahmi, Mojgan Daneshmand, and Raafat R. Man-sour. Compact reconfigurable waveguide circular polarizer. In 2011 IEEE MTT-S International Microwave Symposium, pages 1–4, 2011.
[10] Kai Xu Wang and Hang Wong. A wideband millimeter-wave circularly polarized antenna with 3-d printed polarizer. IEEE Transactions on Antennas and Propagation, 65(3):1038–1046, 2017.
[11] Rana Sadaf Anwar, Lingfeng Mao, and Huansheng Ning. Frequency selective surfaces: A review. Applied Sciences, 8(9), 2018.
[12] Syed S. Bukhari, J (Yiannis) Vardaxoglou, and William Whittow. A metasurfaces review: Definitions and applications. Applied Sciences, 9(13), 2019.
[13] Stanislav B. Glybovski, Sergei A. Tretyakov, Pavel A. Belov, Yuri S. Kivshar, and Constantin R. Simovski. Metasurfaces: From microwaves to visible. Physics Reports, 634:1–72, 2016. Metasurfaces: From microwaves to visible.
[14] Te-Kao Wu. Frequency Selective Surfaces. John Wiley & Sons, Ltd, 2005.
[15] Carlos Molero, Hervé Legay, Thierry Pierré, and María García-Vigueras. Broadband 3d-printed polarizer based on metallic transverse electro-magnetic unit-cells. IEEE Transactions on Antennas and Propagation, 70(6):4632–4644, 2022.
[16] Hanxuan Li, Bo Li, and Lei Zhu. Direct synthesis and design of wideband linear-to-circular polarizers on 3-d frequency selective structures. IEEE Transactions on Antennas and Propagation, 70(10):9385–9395, 2022.
[17] Ankush Kapoor, Ranjan Mishra, and Pradeep Kumar. Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications. Alexandria Engineering Journal, 61(6):4263–4293, 2022.
[18] Ben A. Munk. Finite Antenna Arrays and FSS. John Wiley & Sons, Ltd, 2003.
[19] Go Itami and Osamu Sakai. Analysis and observation of the breakdown of babinet's principle in complementary spoof surface plasmon polariton structures. Scientific Reports, 10, 07 2020.
[20] Garth D. Catton, Hugo G. Espinosa, Aliya A. Dewani, and Steven G. O'keefe. Miniature convoluted fss for gain enhancement of a multiband antenna. IEEE Access, 9:36898–36907, 2021.
[21] Peng-Chao Zhao, Zhi-Yuan Zong, Wen Wu, Bo Li, and Da-Gang Fang. Miniaturized-element bandpass fss by loading capacitive structures. IEEE Transactions on Antennas and Propagation, 67(5):3539–3544, 2019.
[22] Wai Yan Yong, Sharul Kamal Abdul Rahim, Mohamed Himdi, Fauziahanim Che Seman, Ding Lik Suong, Muhammad Ridduan Ramli, and Husameldin Abdelrahman Elmobarak. Flexible convoluted ring shaped fss for x-band screening application. IEEE Access, 6:11657–11665, 2018.
[23] J. Romeu and Y. Rahmat-Samii. Fractal fss: a novel dual-band frequency selective surface. IEEE Transactions on Antennas and Propagation, 48(7):1097–1105, 2000.
[24] Yongjiu Li, Long Li, Yongliang Zhang, and Chunsheng Zhao. Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using minkowski fractal structures. IEEE Transactions on Antennas and Propagation, 63(1):133–141, 2015.
[25] Clarissa Nóbrega, Marcelo Silva, Paulo Silva, A. D’Assunção, and Glaucio Siqueira. Simple, compact, and multiband frequency selective surfaces using dissimilar sierpinski fractal elements. International Journal of Antennas and Propagation, 2015:1–5, 11 2015.
[26] Lina Ma, Lingyun Zhou, and Chang Chen. Broadband miniaturized bandpass frequency selective surfaces based on fractal transmissive metasurface elements. In 2018 IEEE 4th International Conference on Computer and Communications (ICCC), pages 336–340, 2018.
[27] Muhammad Wasif Niaz, Yingzeng Yin, Shufeng Zheng, Luyu Zhao, and Jingdong Chen. Design and analysis of an ultraminiaturized fss using 2.5-d convoluted square spirals. IEEE Transactions on Antennas and Propagation, 68(4):2919–2925, 2020.
[28] Bo Li and Zhongxiang Shen. Wideband 3d frequency selective rasorber. IEEE Transactions on Antennas and Propagation, 62(12):6536–6541, 2014.
[29] Ahmed Abdelmottaleb Omar and Zhongxiang Shen. Thin 3-d bandpass frequency-selective structure based on folded substrate for conformal radome applications. IEEE Transactions on Antennas and Propagation, 67(1):282–290, 2019.
[30] Filippo Costa, Agostino Monorchio, and Giuliano Manara. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Applied Computational Electromagnetics Society Journal, 29, 12 2014.
[31] R. Mittra, C.H. Chan, and T. Cwik. Techniques for analyzing frequency selective surfaces-a review. Proceedings of the IEEE, 76(12):1593–1615, 1988.
[32] Ravi Panwar and Jung Ryul Lee. Progress in frequency selective surface-based smart electromagnetic structures: A critical review. Aerospace Science and Technology, 66:216–234, 2017.
[33] Francisco Mesa, Raul Rodriguez-Berral, and Francisco Medina. Unlocking complexity using the eca: The equivalent circuit model as an efficient and physically insightful tool for microwave engineering. IEEE Microwave Magazine, 19(4):44–65, 2018.
[34] Filippo Costa, Agostino Monorchio, and Giuliano Manara. Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 54(4):35–48, 2012.
[35] Gerardo Perez-Palomino, Juan E. Page, Manuel Arrebola, and José A. Encinar. A design technique based on equivalent circuit and coupler theory for broadband linear to circular polarization converters in reflection or transmission mode. IEEE Transactions on Antennas and Propagation, 66(5):2428–2438, 2018.
[36] Seyed Mohamad Amin Momeni Hasan Abadi and Nader Behdad. Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 64(2):525–534, 2016.
[37] D.M. Pozar. Microwave Engineering, 4th Edition. Wiley, New York, 2011.
[38] Ayesha Kosar Fahad, Cunjun Ruan, and Kanglong Chen. Dual-wide-band dual polarization terahertz linear to circular polarization converters based on bi-layered transmissive metasurfaces. Electronics, 8(8), 2019.
[39] Johan Lundgren, Andreas Ericsson, and Daniel Sjöberg. Design, optimization and verification of a dual band circular polarization selective structure. IEEE Transactions on Antennas and Propagation, 66(11):6023–6032, 2018.
[40] Peng Fei, Zhongxiang Shen, Xin Wen, and Feng Nian. A single-layer circular polarizer based on hybrid meander line and loop configuration. IEEE Transactions on Antennas and Propagation, 63(10):4609–4614, 2015.
[41] Parinaz Naseri, George Goussetis, Nelson J. G. Fonseca, and Sean V. Hum. Inverse design of multi-band reflective polarizing metasurfaces using generative machine learning, 2022.
[42] Raúl Rodriguez-Berral, Francisco Medina, Francisco Mesa, and María Garcia-Vigueras. Quasi-analytical modeling of transmission/reflection in strip/slit gratings loaded with dielectric slabs. IEEE Transactions on Microwave Theory and Techniques, 60(3):405–418, 2012.
[43] P. Callaghan, E.A. Parker, and R.J. Langley. Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces. IEE Proceedings H (Microwaves, Antennas and Propagation), 138:448–454(6), October 1991.
[44] Olli Luukkonen, Constantin Simovski, GÉrard Granet, George Goussetis, Dmitri Lioubtchenko, Antti V. Raisanen, and Sergei A. Tretyakov. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Transactions on Antennas and Propagation, 56(6):1624–1632, 2008.
[45] J. Montgomery. Scattering by an infinite periodic array of thin conductors on a dielectric sheet. IEEE Transactions on Antennas and Propagation, 23(1):70–75, 1975.
[46] Mudar Al-Joumayly and Nader Behdad. A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 57(2):452–459, 2009.
[47] Juan A. Vásquez-Peralvo, José-Manuel Fernández-González, Pavel Valtr, and Jonathan M. Rigelsford. Inductive frequency selective surface: An application for dichroic sub-reflectors. IEEE Access, 8:22721–22732, 2020.
[48] Constantine A. Balanis. Antenna Theory: Analysis and Design. Wiley, 2015.
[49] María Garcia-Vigueras, Francisco Mesa, Francisco Medina, Raúl Rodriguez-Berral, and José L. Gomez-Tornero. Simplified circuit model for arrays of metallic dipoles sandwiched between dielectric slabs under arbitrary incidence. IEEE Transactions on Antennas and Propagation, 60(10):4637–4649, 2012.
[50] Francisco Medina, Francisco Mesa, and Ricardo Marques. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Transactions on Microwave Theory and Techniques, 56(12):3108–3120, 2008.
[51] Johan Lundgren, Oskar Zetterstrom, Francisco Mesa, Nelson J. G. Fonseca, and Oscar Quevedo-Teruel. Fully metallic dual-band linear-to-circular polarizer for k/ka-band. IEEE Antennas and Wireless Propagation Letters, 20(11):2191–2195, 2021.
[52] Marc-André Joyal and Jean-Jacques Laurin. Design and analysis of a cascade circular polarization selective surface at k band. IEEE Transactions on Antennas and Propagation, 62(6):3043–3053, 2014.
[53] F. Foglia Manzillo, M. Ettorre, R. Sauleau, and A. Grbic. Systematic design of a class of wideband circular polarizers using dispersion engineering. In 2017 11th European Conference on Antennas and Propagation (EUCAP), pages 1279–1281, 2017.
[54] Roberto Vincenti Gatti and Riccardo Rossi. A novel meander-line polarizer modeling procedure and broadband equivalent circuit. IEEE Transactions on Antennas and Propagation, 65(11):6179–6184, 2017.
[55] Nelson J. G. Fonseca and Cyril Mangenot. High-performance electrically thin dual-band polarizing reflective surface for broadband satellite applications. IEEE Transactions on Antennas and Propagation, 64(2):640–649, 2016.
[56] Salvador Mercader-Pellicer, Wenxing Tang, Daniele Bresciani, Hervé Legay, Nelson J. G. Fonseca, and George Goussetis. Angularly stable linear-to-circular polarizing reflectors for multiple beam antennas. IEEE Transactions on Antennas and Propagation, 69(8):4380–4389, 2021.
[57] Parinaz Naseri, Sérgio A. Matos, Jorge R. Costa, Carlos A. Fernandes, and Nelson J. G. Fonseca. Dual-band dual-linear-to-circular polarization converter in transmission mode application to k/ka -band satellite communications. IEEE Transactions on Antennas and Propagation, 66(12):7128–7137, 2018.
[58] Jiang Wang, Zhongxiang Shen, Wen Wu, and Keming Feng. Wideband circular polarizer based on dielectric gratings with periodic parallel strips. Opt. Express, 23(10):12533–12543, May 2015.
[59] Efstratios Doumanis, George Goussetis, José Luis Gomez-Tornero, Robert Cahill, and Vincent Fusco. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Transactions on Antennas and Propagation, 60(1):212–219, 2012.
[60] Kaiyue Liu, Guangming Wang, Tong Cai, and Tengyao Li. Dual-band transmissive circular polarization generator with high angular stability. Opt. Express, 28(10):14995–15005, May 2020.
[61] Qingyun Zeng, Wu Ren, He Zhao, Zhenghui Xue, and Weiming Li. Dual-band transmission-type circular polariser based on frequency selective surfaces. IET Microwaves, Antennas & Propagation, 13(2):216–222, 2019.
[62] J L Masa-Campos and F González-Fernández. Dual linear/circular polarized plannar antenna with low profile double-layer polarizer of 45± tilted metallic strips for wimax applications. PIER - Progress in Electromagnetics Research, 98:221–231, Oct. 2009.
[63] J. M. Fernández, J. L. Masa-Campos, and M. Sierra-Pérez. Circularly polarized omnidirectional millimeter wave monopole with parasitic strip elements. Microwave and Optical Technology Letters, 49(3):664–668, 2007.
[64] Darwin Blanco and Ronan Sauleau. Broadband and broad-angle multilayer polarizer based on hybrid optimization algorithm for low-cost ka-band applications. IEEE Transactions on Antennas and Propagation, 66(4):1874–1881, 2018.
[65] Long Li, Yongjiu Li, Zhao Wu, Feifei Huo, Yongliang Zhang, and Chunsheng Zhao. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces. Proceedings of the IEEE, 103(7):1057–1070, 2015.
[66] Ming-Yun Lv, Min-Jie Huang, Jun Huang, and Zhe Wu. Study on the dual-band characteristic of combined element based frequency selective surfaces. In 2009 IEEE International Workshop on Antenna Technology, pages 1–4, 2009.
[67] Min-Jie Huang, Ming-Yun Lv, Jun Huang, and Zhe Wu. A new type of combined element multiband frequency selective surface. IEEE Transactions on Antennas and Propagation, 57(6):1798–1803, 2009.
[68] J.A. Bossard, D.H. Werner, T.S. Mayer, J.A. Smith, Y.U. Tang, R.P. Drupp, and Ling Li. The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications. IEEE Transactions on Antennas and Propagation, 54(4):1265–1276, 2006.
[69] Clarissa Nóbrega, Marcelo Silva, Paulo Silva, A. D’Assunção, and Glaucio Siqueira. Simple, compact, and multiband frequency selective surfaces using dissimilar sierpinski fractal elements. International Journal of Antennas and Propagation, 2015:1–5, 11 2015.
[70] Jian-Qiang Hou, Ling-Feng Shi, Sen Chen, and Zhong-Rong Gou. Compact broadband circular polariser based on two-layer frequency-selective surfaces. Electronics Letters, 51(15):1134–1136, 2015.
[71] Miguel A. Salas-Natera, Roberto Garrote Moreno, and Ramón Martínez Rodríguez-Osorio. Dual-band and dual linear to dual circular polarization transformer fss in reflection for satellite communications. In 2022 16th European Conference on Antennas and Propagation (EuCAP), pages 1–5, 2022.
[72] Roberto Garrote Moreno, Miguel A. Salas-Natera, and Ramón Martínez Rodríguez-Osorio. Improved axial ratio bandwidth for dual-band dual-circular polarization fss in transmission mode for satellite communications by stub tuned resonator. In 2022 16th European Conference on Antennas and Propagation (EuCAP), pages 1–5, 2022.
[73] Alfrêdo Gomes Neto, Adaildo Gomes DAssunção Junior, Jefferson Costa e Silva, Josiel Do Nascimento Cruz, João Batista de Oliveira Silva, and Nieremberg José Pereira de Lyra Ramos. Multiband frequency selective surface with open matryoshka elements. In 2015 9th European Conference on Antennas and Propagation (EuCAP), pages 1–5, 2015.
[74] Zhenglong Wang, Yuehe Ge, Chengxiu Lin, Kaiting Liu, and Jixiong Pu. High-efficiency cross and linear-to-circular polarization converters based on novel frequency selective surfaces. Microwave and Optical Technology Letters, 61(10):2410–2419, 2019.
[75] Bao-qin Lin. A wide-angle and wide-band circular polarizer using a bi-layer metasurface. Progress In Electromagnetics Research, 161, 05 2018.
[76] B.C. Wadell. Transmission Line Design Handbook. Artech House microwave library. Artech House, 1991.
[77] Aida L Vera López, Swapan K Bhattacharya, Carlos A Donado Morcillo, John Papapolymerou, Debabani Choudhury, and Allen Horn. Novel low loss thin film materials for wireless 60 ghz application. In 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), pages 1990–1995, 2010.
[78] Juan J. Durillo, Antonio J. Nebro, Francisco Luna, and Enrique Alba. A study of master-slave approaches to parallelize nsga-ii. In 2008 IEEE International Symposium on Parallel and Distributed Processing, pages 1–8, 2008.
[79] Francisco Luna, Antonio Nebro, Enrique Alba, and Juan Durillo. Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm. Engineering Optimization, 40:1067–1084, 11 2008.
[80] Francisco Luna, Gustavo R. Zavala, Antonio J. Nebro, Juan J. Durillo, and Carlos A. Coello Coello. Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. The Computer Journal, 59(6):777–792, 06 2016.
[81] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.
[82] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18, 03 2003.
[83] Katsushige Harima, Makoto Sakasai, and Katsumi Fujii. Determination of gain for pyramidal-horn antenna on basis of phase center location. In 2008 IEEE International Symposium on Electromagnetic Compatibility, pages 1–5, 2008.
[84] Yogesh Ranga, Ladislau Matekovits, Stuart G. Hay, and Trevor S. Bird. An anisotropic impedance surface for dual-band linear-to-circular transmission polarization convertor. In 2013 International Workshop on Antenna Technology (iWAT), pages 47–50, 2013.
[85] Mohammad Ayoub Sofi, Kushmanda Saurav, and Shiban Kishen Koul. Frequency selective surface-based compact single substrate layer dual-band transmission-type linear-to-circular polarization converter. IEEE Transactions on Microwave Theory and Techniques, 68(10):4138–4149, 2020.
[86] Ayesha Kosar Fahad, Cunjun Ruan, Rabia Nazir, Tanveer Ul Haq, and Wenlong He. Dual-band ultrathin meta-array for polarization conversion in ku/ ka-band with broadband transmission. IEEE Antennas and Wireless Propagation Letters, 19(5):856–860, 2020.
[87] Hong Bin Wang and Yu Jian Cheng. Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes. IEEE Transactions on Antennas and Propagation, 67(6):4296–4301, 2019.
[88] Francesco Greco and Emilio Arnieri. Dual-frequency linear-to-circular polarization converter for ka-band applications. Sensors, 22(6), 2022.
[89] Michele Del Mastro, Mauro Ettorre, and Anthony Grbic. Dual-band, orthogonally-polarized lp-to-cp converter for satcom applications. IEEE Transactions on Antennas and Propagation, 68(9):6764–6776, 2020.
[90] Jin-Ming Xie, Bo Li, and Lei Zhu. Dual-band circular polarizers with versatile polarization conversions based on aperture-coupled patch resonators. IEEE Transactions on Antennas and Propagation, 70(7):5584–5596, 2022.
[91] Parinaz Naseri, Sérgio A. Matos, Jorge R. Costa, and Carlos A. Fernandes. Phase-delay versus phase-rotation cells for circular polarization transmit arrays—appli-cation to satellite ka-band beam steering. IEEE Transactions on Antennas and Propagation, 66(3):1236–1247, 2018.
[92] Rudi H. Phillion and Michal Okoniewski. Lenses for circular polarization using planar arrays of rotated passive elements. IEEE Transactions on Antennas and Propagation, 59(4):1217–1227, 2011.
[93] Yahong Liu, Yang Luo, Congcong Liu, Kun Song, and Xiaopeng Zhao. Linear polarization to left/right-handed circular polarization conversion using ultrathin planar chiral metamaterials. Applied Physics A, 123:571, 08 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89059-
dc.description.abstract在天線領域,主要的設計參數之一是所謂的電磁(EM)波的偏振。這個參數的選擇通常取決於它所要使用的應用類型。因此,在導航系統、成像和遙感或衛星通信(SATCOM)等應用中,由於圓極化(CP)相對於線性極化(LP)的優勢,通常更願意使用圓極化。其中我們可以包括對多徑衰落的更大的免疫力和減少偏振失配的影響。此外,在SATCOM中,使用CP可以減少對法拉第旋轉的敏感性,法拉第旋轉是在電磁波通過電離層傳播時發生的,對鏈路平衡有相當大的影響。這個項目是由新一代移動通信領域的衛星應用所激發的。此外,在SATCOM應用中,天線經常需要在兩個不同的和不相鄰的頻段工作。此外,經常需要這些頻段具有正交極化,以抵消SATCOM的高干擾敏感性。

為了符合上述要求,一種可能性是使用CP天線或其他類型的天線系統,這些天線具有復雜的饋電網絡,通常昂貴而笨重,或者效率不足。除了這種策略外,還有一些機制可以將LP轉化為CP,無論是在傳輸或反射模式下。使用這種機制並不特別新穎。然而,基於頻率選擇表面(FSSs)和/或元表面(MSs)的結構用於這一功能,近年來經歷了巨大的增長。

因此,這篇碩士論文致力於設計、優化、測量和分析一個基於FSS的面板,用於雙頻傳輸模式下的LP-CP極化轉換。該建議旨在X-和K-波段區域內工作,中心頻率分別定義為8.2和24.5GHz。這些中心頻率的比例為1:3,大大高於文獻中可以找到的這類設計的例子的比例。還值得一提的是,傳輸模式固有的困難,由於其在軸向比率(AR)、帶寬(BW)方面的性能較差,或者需要使用較多的層數來達到設計要求,使得它比反射式的同類產品更笨重,所以文獻中對其分析較少。然而,它的舒適性和使用的便利性使它更容易被整合到所有類型的應用中,所以值得深入研究這個領域。

該項目從根本上分為三個部分:對技術狀況和理論背景的分析,設計和優化方案,以及系統的製造和測量。第一部分涉及對該主題的技術狀況和背後的理論的廣泛分析,這為設計階段提供了信息。在這個分析中,重點放在從該主題的最基本特徵,如設計參數的操作和定義以及FSS的一般分析,到LP到CP偏振轉換的其他更具體的方面,通過FSS的類型,多波段技術,或單元格(UC)的相對尺寸對應用的工作波長的影響。其次,設計階段從一系列受分析文獻啟發的建議開始。設計過程涉及使用多種軟件進行數值模擬。在放棄了那些不太有希望的拓撲結構後,最終選定了一個。它是一種基於條狀各向異性的多層結構,具有修改過的晶格,有可能滿足最初提出的要求。該拓撲結構由兩層羅傑斯RO3006基片和其外表面的兩層銅條組成。此外,由於在設計中提供了更大的靈活性,所以選擇了使用間隔物來分離基片。為了最終完成設計階段,對提議的表面尺寸進行了優化,以測試是否可以達到所需的性能參數。為此,進行了兩方面的工作。一方面,使用商業軟件進行優化,試圖根據優化本身的進展來調整優化功能和輸入參數。同時,使用非商業軟件在多台機器上進行並行優化,目的是節省計算時間。此外,該軟件在設置函數、參數和優化過程的要求方面提供了更大的自由度,還允許將製造過程的公差納入優化方法本身。第三,設計製作了消聲室中的測量。最後,對獲得的結果進行了審查,允許檢查該設計的操作能力,重點是其主要的優點和缺點。此外,這些結果還與文獻中的一些現有設計進行了比較。

總的來說,本論文的貢獻在於提出了一種新穎的基於FSS的面板設計,它可以同時工作在兩個遙遠的頻段,並在每個頻段將LP波轉化為具有正交偏振的CP波。
zh_TW
dc.description.abstractIn the field of antennas, one of the main design parameters is the so-called polarization of the electromagnetic (EM) wave. The choice of this parameter generally depends on the type of application for which it is intended to be used. Thus, in applications such as navigation systems, imaging and remote sensing, or satellite communications (SATCOM) it is often preferable to use circular polarization (CP) due to the advantages it provides as opposed to linear polarization (LP). Among them we may include greater immunity to multipath fading and reduction of the impact of polarization mismatch. In addition, in SATCOM, the use of CP allows reducing the sensitivity to Faraday rotation that occurs during the propagation of the EM wave through the ionosphere, which can have a considerable effect on the link balance. This project is motivated by satellite applications in the area of new generation mobile communications. Moreover, in SATCOM applications it is frequently necessary for the antenna to work in two different and non-adjacent frequency bands. In addition, it is often required that these bands have orthogonal polarizations to counteract the high interference sensitivity of SATCOMs.

In order to comply with the above requirements, one possibility is the use of CP antennas or other types of antenna systems with complex feeding networks, often expensive and bulky, or insufficiently efficient. In addition to this strategy, there are mechanisms that allow transforming LP into CP, whether in transmission or reflection mode. The use of such mechanisms is not particularly novel. However, the use of structures based on frequency selective surfaces (FSSs) and/or metasurfaces (MSs) for this function has undergone an enormous growth in recent years.

Consequently, this Master's Thesis is devoted to the design, optimization, measurement, and analysis of a FSS-based panel for LP-to-CP polarization transformation in dual-band transmission mode. The proposal aims to work within the X- and K-band regions, with center frequencies defined at 8.2 and 24.5 GHz, respectively. These center frequencies present a ratio of 1:3, considerably higher than the ratios of the examples that can be found in the literature for this type of design. It is also worth mentioning the difficulties inherent to the transmission mode, less analyzed in the literature due to its worse performance in terms of axial ratio (AR), bandwidth (BW), or the need to use a higher number of layers to achieve the design requirements, making it bulkier than their reflective counterparts. However, its comfort and convenience of use make it more easily integrable in all types of applications, so it is worth delving into this area.

The project is fundamentally divided into three parts: analysis of the state of the art and the theoretical background, design and optimization of the proposal, and manufacturing and measurement of the system. The first one involves an extensive analysis of the state of the art of the topic and the theory behind it, which informed the design phase. In this analysis, emphasis is placed on aspects ranging from the most basic features of the subject, such as the operation and definition of design parameters and general analysis of FSSs, to other more specific aspects for LP-to-CP polarization conversion, passing through FSSs types, multi-band techniques, or the impact of the relative size of the unit cell (UC) with respect to the working wavelengths of the application. Secondly, the design phase begins with a series of proposals inspired by the analyzed literature. The design process has involved the use of numerical simulations using multiple softwares. After discarding the less promising topologies, the final one is selected. It is a strip-based anisotropic multi-layer structure with a modified lattice, which has the potential to meet the initially proposed requirements. The topology consists of two layers of Rogers RO3006 substrate and their two layers of copper strips on the outer faces. In addition, the use of spacers to separate the substrates has been chosen due to the greater flexibility that it provides in design. To finalize the design stage, optimization of the proposed surface dimensions is carried out to test whether the desired performance parameters could be achieved. To this end, two lines of work are conducted. On the one hand, an optimization using commercial software, trying to adjust the optimization function and the input parameters according to the progress of the optimization itself. Simultaneously, non-commercial software is used to parallelize the optimization on multiple machines, with the aim of saving computational time. In addition, this software provides greater freedom in setting functions, parameters and requirements for the optimization process, also allowing the manufacturing process tolerances to be incorporated into the optimization approach itself. Thirdly, the design is fabricated for measurement in an anechoic chamber. Finally, the results obtained are reviewed, allowing to examine the operational capabilities of the design, with emphasis on its main advantages and disadvantages. In addition, the results are compared with some of the existing designs in the literature.

Overall, this thesis contributes by presenting a novel design of an FSS-based panel that can operate in two distant frequency bands simultaneously, and transform LP waves into CP waves with orthogonal polarizations in each band.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:57:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:57:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
摘要 i
Abstract v
Contents ix
List of Figures xiii
List of Tables xix
Denotation xxi
Acronyms xxiii
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Theoretical Framework 7
2.1 Introduction to FSSs and MSs . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Operating Theory of FSSs . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Types of FSSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4.1 Incidence Angle . . . . . . . . . . . . . . . . . . . . . 20
2.1.4.2 Dielectric Loading Effects . . . . . . . . . . . . . . . . 22
2.1.4.3 Lattice and Associated Effects . . . . . . . . . . . . . 24
2.2 FSS-based LP-to-CP Polarization Conversion . . . . . . . . . . . . . 26
2.2.1 Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 3 Design and Simulation Analysis of the FSS-based Polarizer 31
3.1 UC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Topology Selection Process . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Final Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Approaches and Techniques . . . . . . . . . . . . . . . . . . . . . 54
3.2.1.1 Parallelized Optimization . . . . . . . . . . . . . . . . 55
3.2.1.2 Traditional-Style Optimization . . . . . . . . . . . . . 58
3.2.2 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Final Design Simulation Results . . . . . . . . . . . . . . . . . . . . 65
3.3.1 In-depth UC Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Finite Array Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Chapter 4 Manufacturing, Experimental Validation and Analysis of the Proposal 75
4.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 Techniques and Methodology . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Fabrication Results Conclusions . . . . . . . . . . . . . . . . . . . 80
4.2 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Comparisons with State of the Art Solutions . . . . . . . . . . . . . . 92
Chapter 5 Conclusions and Future Work 95
5.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Future Research Lines . . . . . . . . . . . . . . . . . . . . . . . . . 97
References 101
-
dc.language.isoen-
dc.subject圓形偏振zh_TW
dc.subject雙波段偏振器zh_TW
dc.subject線性至圓形偏振轉換zh_TW
dc.subject週期性結構zh_TW
dc.subject選擇性表面zh_TW
dc.subject頻率zh_TW
dc.subjectCircular polarizationen
dc.subjectfrequencyen
dc.subjectselective surfaceen
dc.subjectperiodic structureen
dc.subjectlinear-to-circular polarization conversionen
dc.subjectdual-band polarizeren
dc.title基於雙頻電磁 FSS 的線性至圓形偏振變換板的設計與 分析zh_TW
dc.titleDesign and Analysis of a Dual-Band Electromagnetic FSS-based Linear-to-Circular Polarization Transformation Panelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor曼努埃爾-塞拉-卡斯塔涅爾zh_TW
dc.contributor.coadvisorManuel Sierra Castañeren
dc.contributor.oralexamcommittee何塞-曼努埃爾-費爾南德斯-岡薩雷斯;鄭宇翔;楊成發;阿方索-托馬斯-穆里爾-巴拉多zh_TW
dc.contributor.oralexamcommitteeJosé Manuel Fernández González;Yu-Hsiang Cheng;Chang-Fa Yang;Alfonso Tomás Muriel Barradoen
dc.subject.keyword圓形偏振,頻率,選擇性表面,週期性結構,線性至圓形偏振轉換,雙波段偏振器,zh_TW
dc.subject.keywordCircular polarization,frequency,selective surface,periodic structure,linear-to-circular polarization conversion,dual-band polarizer,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202302310-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
39.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved