Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author柯秉辰zh_TW
dc.contributor.authorPin-Chen Koen
dc.date.accessioned2023-08-16T16:55:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation林立剛 (2021). N 型波傳遞之數值模擬與實驗驗證. 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北.
施文育 (2022). 前導下沉 N 型波下速度場之探討. 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北.
陳玟諭 (2023). 前導下沉 N 型海嘯波於不同傳遞距離之溯升. 國立臺灣大學工程科學及海洋工程研究所碩士論文初稿,台北.
黄俊瑞 (2022). 前導下沉 N 型海嘯波之傳遞與溯升. 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北.
Barranco, I. and Liu, P. L.-F. (2021). Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid Mechanics, 915, A81.
Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées, 17, 55–108.
Carvajal, M., Sepúlveda, I., Gubler, A., and Garreaud, R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters, 49(6), e2022GL098153.
Chan, I.-C. and Liu, P. L.-F. (2012). On the runup of long waves on a plane beach. Journal of Geophysical Research: Oceans, 117(C8).
Charvet, I., Eames, I., and Rossetto, T. (2013). New tsunami runup relationships based on long wave experiments. Ocean Modelling, 69, 79–92.
Dutykh, D. and Dias, F. (2009). Energy of tsunami waves generated by bottom motion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2103), 725–744.
Galvin, C. (1968). Breaker type classification on three laboratory beaches. Journal of Geophysical Research, 73(12), 3651–3659.
Galvin, C. (1972). Wave breaking in shallow water. Waves on Beaches and Resulting Sediment Transport, pages 413–456.
Goring, D. G. (1978). Tsunamis–the propagation of long waves onto a shelf. PhD thesis, California Institute of Technology, Pasadena, CA, USA.
Goseberg, N., Wurpts, A., and Schlurmann, T. (2013). Laboratory-scale generation of tsunami and long waves. Coastal Engineering, 79, 57–74.
Greenshields, C. (2020). OpenFOAM v8 User Guide. The OpenFOAM Foundation, London, UK.
Grilli, S. and Svendsen, I. (1990). Computation of nonlinear wave kinematics during propagation and runup on a slope. Water Wave Kinematics, pages 387–412.
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin, M. (2019). Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Reports, 9(1), 11946.
Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611–622.
Higuera, P. (2017). olaFlow: CFD for waves. URL: https://zenodo.org/record/1297013.
Higuera, P., Losada, I. J., and Lara, J. L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35–47.
Imamura, F., Suppasri, A., Arikawa, T., Koshimura, S., Satake, K., and Tanioka, Y. (2022). Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022. Pure and Applied Geophysics, 179(5), 1549–1560.
Jensen, A., Pedersen, G. K., and Wood, D. J. (2003). An experimental study of wave run-up at a steep beach. Journal of Fluid Mechanics, 486, 161–188.
Klettner, C., Balasubramanian, S., Hunt, J., Fernando, H., Voropayev, S., and Eames, I. (2012). Draw-down and run-up of tsunami waves on sloping beaches. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 165(2), 119–129.
Korteweg, D. J. and De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422–443.
Li, Y. (2000). Tsunamis: Non-breaking and breaking solitary wave run-up. California Institute of Technology.
Li, Y. and Raichlen, F. (2003). Energy balance model for breaking solitary wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2), 47–59.
Liang, D., Gotoh, H., Khayyer, A., and Chen, J. M. (2013). Boussinesq modelling of solitary wave and N-wave runup on coast. Applied Ocean Research, 42, 144–154.
Lima, V. V., Avilez-Valente, P., Baptista, M. A. V., and Miranda, J. M. (2019). Generation of N-waves in laboratory. Coastal Engineering, 148, 1–18.
Lin, P. and Li, C. W. (2002). A σ-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids, 38(11), 1045–1068.
Lin, P. and Liu, P. L.-F. (1998). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 359, 239–264.
Liu, P. L.-F., Park, Y. S., and Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449–463.
Lo, H.-Y., Park, Y. S., and Liu, P. L.-F. (2013). On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coastal Engineering, 80, 1–14.
Ma, G., Kirby, J., and Shi, F. (2014). Non-hydrostatic wave model NHWAVE: Documentation and user’s manual (version 2.0). Department of Civil and Environmental Engineering, Old Dominion University.
Ma, G., Shi, F., and Kirby, J. T. (2011). A polydisperse two-fluid model for surf zone bubble simulation. Journal of Geophysical Research: Oceans, 116(C5).
Ma, G., Shi, F., and Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43, 22–35.
Madsen, P. A., Fuhrman, D. R., and Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12).
Madsen, P. A. and Schaeffer, H. A. (2010). Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. Journal of Fluid Mechanics, 645, 27–57.
Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38(7).
Phillips, N. A. (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Meteorological Research, 14, 184–185.
Rossetto, T., Allsop, W., Charvet, I., and Robinson, D. I. (2011). Physical modelling of tsunami using a new pneumatic wave generator. Coastal Engineering, 58(6), 517–527.
Russell, J. S. (1845). Report on Waves: Made to the Meetings of the British Association in 1842-43.
Schimmels, S., Sriram, V., Didenkulova, I., and Fernández, H. (2014). On the generation of tsunami in a large scale wave flume. Coastal Engineering Proceedings, 1(34), 14.
Svendsen, I. and Justesen, P. (1984). Forces on slender cylinders from very high and spilling breakers. In Symposium on Description and Modelling of Directional Seas, pages 18–20.
Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523–545.
Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., and Gonzalez, F. I. (2009). Validation and verification of tsunami numerical models. Tsunami Science Four Years after the 2004 Indian Ocean Tsunami: Part I: Modelling and Hazard Assessment, pages 2197–2228.
Tadepalli, S. and Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1923), 99–112. Wachtendorf, T., Kendra, J. M., Rodriguez, H., and Trainor, J. (2006). The social impacts and consequences of the December 2004 Indian ocean tsunami: observations from India and Sri Lanka. Earthquake Spectra, 22(S3), 693–714.
Whitham, G. B. (1974). Linear and nonlinear waves. John Wiley & Sons.
Widiyanto, W., Santoso, P. B., Hsiao, S.-C., and Imananta, R. T. (2019). Post-event field survey of 28 September 2018 Sulawesi earthquake and tsunami. Natural Hazards and Earth System Sciences, 19(12), 2781–2794.
Wu, Y.-T., Liu, P. L.-F., Hwang, K.-S., and Hwung, H.-H. (2018). Runup of laboratorygenerated breaking solitary and periodic waves on a uniform slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(6), 04018023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89052-
dc.description.abstract溯升即海浪抵達陸地後可達之最大高程,是海嘯和波浪在海岸工程中的重要指標之一。海嘯由多個波浪疊加而成,當真實海嘯接近沿岸時,海水面經常被觀察到會先出現退縮的現象。早期,孤立波常作為海嘯替代模型,卻無法表現海水的退縮現象。因此許多學者陸續提出不同的替代波型,其中之一則為 N 型波。然而,以波浪數值模擬軟體模擬 N 型波的溯升,至今並無人制定其方法與流程。本篇文章則透過兩種波浪數值模擬軟體,分別模擬造波及溯升,完成一套有效率的 N 型波溯升模擬方法。完成驗證後並在後續模擬中發現,破碎 N 型波會比相對應之破碎孤立波的溯升值低,原因為損失能量與紊流耗散能量大於孤立波,擁有更強烈的破碎現象,越強烈的破碎現象會對沿岸造成越嚴重的破壞。因此,使用孤立波作為替代波型,可能會低估真實海嘯對沿岸的侵蝕與破壞。zh_TW
dc.description.abstractWave runup, the maximum elevation water can reach on land, is an important parameter in coastal engineering for both tsunamis and water waves. A tsunami is formed by the superposition of multiple waves. When a real tsunami approaches the coast, sea level is often observed to recede first before rising. In the past, solitary waves were often used as a substitute model for tsunamis, but they could not capture the phenomenon of sea water receding. Therefore, many scholars have proposed different alternative waveforms of tsunamis, one of which is the N-wave. However, no one has yet established a method and procedure for simulating the runup of N-waves using numerical wave simulation software. This article presents an efficient N-wave runup simulation method, which uses two simulation software: one for wave generation and the other for wave propagation and runup simulation. After validation and subsequent simulations, it was found that the broken N-wave has a lower runup value compared to the corresponding broken solitary wave. This is because the energy loss and turbulent dissipation in the broken wave are greater than in the solitary wave, resulting in a more intense breaking phenomenon. The stronger the breaking phenomenon, the more severe the coastal damage. Therefore, using solitary waves as a substitute wave type may underestimate the erosion and destruction caused by real tsunamis on the coast.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:55:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:55:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xix
符號列表 xxi
第一章 緒論 1
1.1 研究背景與意義 1
1.2 相關文獻回顧 2
1.3 研究動機與目的 4
1.4 研究方法與主要內容 5
1.5 本研究架構 6
第二章 孤立波與 N 型波理論 7
2.1 孤立波定義 7
2.2 N 型波定義 8
2.3 N 型波造波理論 9
第三章 NHWAVE 數值模型 13
3.1 σ 座標系統 13
3.2 水動力模型控制方程 14
3.3 紊流模型控制方程 15
3.4 紊流耗散能量與損失能量 17
第四章 數值模擬驗證 19
4.1 初始條件與邊界條件 19
4.1.1 OpenFOAM 之初始條件與邊界條件 19
4.1.2 NHWAVE 之初始條件與邊界條件 20
4.1.3 N 型波初始波型資料轉換方式 21
4.2 收斂性測試 23
4.2.1 OpenFOAM 之收斂性測試 23
4.2.2 NHWAVE 之收斂性測試 25
4.3 溯升值驗證 28
4.3.1 孤立波溯升值驗證 28
4.3.2 N 型波溯升值驗證 29
4.4 速度場驗證 32
4.5 改變斜板位置之數值水槽架設與驗證 39
4.6 改變斜板斜率之數值水槽架設與驗證 42
4.7 紊流耗散能量與損失能量的驗證 44
第五章 結果與討論 47
5.1 分析孤立波與 N 型波溯升值之差異 47
5.1.1 普通 N 型波(general N-wave) 48
5.1.2 段波狀 N 型波(bore-like N-wave) 53
5.1.3 陡峭型 N 型波(steep N-wave) 58
5.1.4 強烈破碎 N 型波(strong-breaking N-wave) 63
5.2 斜板前移的影響 69
5.2.1 斜板前移對孤立波的影響 70
5.2.2 斜板前移對 N 型波的影響 72
5.3 斜率改變的影響 76
5.3.1 改變斜板斜率對孤立波的影響 76
5.3.2 改變斜板斜率對N 型波的影響 79
第六章 結論與未來展望 89
6.1 結論 89
6.2 未來展望 90
參考文獻 91
附錄 A — 驗證用之實驗與模擬數據 97
A.1 孤立波之造波參數 97
A.2 N 型波之造波參數 98
A.3 孤立波溯升值驗證數據(斜率 1:10 斜板) 102
A.4 N 型波溯升值驗證數據(斜率 1:10 斜板) 103
A.5 孤立波溯升值驗證數據(斜率 1:10 斜板前移) 107
A.6 N 型波溯升值驗證數據(斜率 1:10 斜板前移) 109
A.7 孤立波溯升值驗證數據(斜率 1:20 斜板) 113
A.8 孤立波溯升值驗證數據(斜率 1:40 斜板) 117
A.9 孤立波能量驗證數據 119
附錄 B — 案例之模擬結果 123
B.1 孤立波於斜率 1:10 斜板(置於水槽 13.5 公尺處) 123
B.2 N 型波於斜率 1:10 斜板(置於水槽 13.5 公尺處) 124
B.3 孤立波於斜率 1:10 斜板(置於水槽 7.0 公尺處) 128
B.4 N 型波於斜率 1:10 斜板(置於水槽 7.0 公尺處) 130
B.5 孤立波於斜率 1:20 斜板(置於水槽 13.5 公尺處) 134
B.6 N 型波於斜率 1:20 斜板(置於水槽 13.5 公尺處) 135
B.7 孤立波於斜率 1:40 斜板(置於水槽 13.5 公尺處) 139
B.8 N 型波於斜率 1:40 斜板(置於水槽 13.5 公尺處) 141
-
dc.language.isozh_TW-
dc.title以NHWAVE模擬N型波之溯升zh_TW
dc.titleNumerical simulation of N-wave runup using NHWAVEen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee戴璽恆;吳昀達;莊偉良zh_TW
dc.contributor.oralexamcommitteeHsi-Heng Dai;Yun-Ta Wu;Wei-Liang Chuangen
dc.subject.keywordNHWAVE,OpenFOAM,N 型波,孤立波,溯升,波破碎,zh_TW
dc.subject.keywordNHWAVE,OpenFOAM,N-wave,solitary wave,runup,wave breaking,en
dc.relation.page145-
dc.identifier.doi10.6342/NTU202303412-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved