Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89050
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author陳玟諭zh_TW
dc.contributor.authorWen-Yu Chenen
dc.date.accessioned2023-08-16T16:55:22Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] Barranco, I., & Liu, P. L. F. (2021). Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid Mechanics, 915, A81.
[2] Biésel, F., Suquet, F., (1951). Les appareils générateurs de houle en laboratoire. La Houille Blanche 5, 723–737.
[3] Boussinesq, J. (1872), The´orie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathématiques Pures et Appliquées, 55-108.
[4] Briggs, M.J., Synolakis, C.E., Harkins, G.S., Hughes, S.A., (1995). Large-scale, three dimensional laboratory measurements of tsunami inundation. Tsunamis: Progress in Prediction, Disaster Prevention and Warning.Kluwer Academic Publishers, Netherlands 129–149.
[5] Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
[6] Carvajal, M., Sepúlveda, I., Gubler, A., & Garreaud, R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters, 49(6), e2022GL098153.
[7] Chan, I. C., & Liu, P. L. F. (2012). On the runup of long waves on a plane beach. Journal of Geophysical Research: Oceans, 117(C8).
[8] Chang, Y.-H., Hwang, K.-S., Hwung, H.-H., (2009). Large-scale laboratory measurements of solitary wave inundation on a 1:20 slope. Coastal Engineering, 56, 1022–1034.
[9] Drähne, U., Goseberg, N., Vater, S., Beisiegel, N., Behrens, J., (2016). An experimental and numerical study of long wave run-up on a plane beach. J. Mar. Sci. Eng. 4 (1), 1.
[10] Gjevik, B., Pedersen, G., (1981). Run-up of long waves on an inclined plane. Preprint Ser. no. 2. Dept. of Maths, University of Oslo, Oslo, Norway.
[11] Goring, D.G., (1978). Tsunamis — The Propagation of Long Waves Onto a Shelf. PhD thesis California Institute of Technology, Pasadena, California.
[12] Goseberg, N., Wurpts, A., & Schlurmann, T. (2013). Laboratory-scale generation of tsunami and long waves. Coastal Engineering, 79, 57-74.
[13] Grilli, S., & Svendsen, I. A. (1990). Computation of nonlinear wave kinematics during propagation and runup on a slope. Water wave kinematics, 387-412.
[14] Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622.
[15] Hall, J. V., & Watts, G. M. (1953). Laboratory investigation of the vertical rise of solitary waves on impermeable slopes.
[16] Hammack, J. L., & Segur, H. (1978). Modelling criteria for long water waves. Journal of Fluid Mechanics, 84(2), 359-373.
[17] Hsiao, S. C., Hsu, T. W., Lin, T. C., & Chang, Y. H. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, 55(12), 975-988.
[18] Hyun, J. M. (1976). Theory for hinged wavemakers of finite draft in water of constant depth. Journal of Hydronautics, 10(1), 2-7.
[19] Jensen, A., Pedersen, G.K., Wood, D.J., (2003). An experimental study of wave run-up at a steep beach. Journal of Fluid Mechanics 461, 161–188.
[20] Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443.
[21] Langsholt, M., (1981). Experimental study of wave run-up. thesis Cand.real. University of Oslo, Oslo, Norway.
[22] Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstro¨m, G., Satake, K., Sipkin, S., (2005). The great Sumatra-Andaman earthquake of 26 December 2004. Science 308, 1127e1133.
[23] Li, Y., & Raichlen, F. (2001). Solitary wave runup on plane slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(1), 33-44.
[24] Li, Y., Raichlen, F., (2002). Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456, 295–318.
[25] Lima, V. V., Avilez-Valente, P., Baptista, M. A. V., & Miranda, J. M. (2019). Generation of N-waves in laboratory. Coastal Engineering, 148, 1-18.
[26] Liu, P. L. F., Park, Y. S., & Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449-463.
[27] Lo, H. Y., Park, Y. S., & Liu, P. L. F. (2013). On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coastal Engineering, 80, 1-14.
[28] Lo, H.-Y., and Pujara, N. (2011). Measuring run-up and bed shear-stress using long-stroke wavemaker. Quake Summit 2011, Earthquake & multi-hazards resilience: progress and challenges, in Buffalo, NY, June 9-11.
[29] Madsen, P. A., & Schäffer, H. A. (2010). Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. Journal of Fluid Mechanics, 645, 27-57.
[30] Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12).
[31] McGovern, D., Chandler, I., & Rossetto, T. (2016, May). Experimental study of the runup of tsunami waves on a smooth sloping beach. In 6thInternational Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science.
[32] Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical Research Letters, 38(7).
[33] Pujara, N., Liu, P. L. F., & Yeh, H. H. (2015). An experimental study of the interaction of two successive solitary waves in the swash: A strongly interacting case and a weakly interacting case. Coastal Engineering, 105, 66-74.
[34] Raichlen, F., (1970). Tsunamis: some laboratory and field observations. Proceedings of the 12th Coastal Engineering Conference., vol. 3. American Society of Civil Engineering, pp. 2103–2122
[35] Schimmels, S., Sriram, V., & Didenkulova, I. (2016). Tsunami generation in a large scale experimental facility. Coastal Engineering, 110, 32-41.
[36] Scott Russell, J., (1845). Report on waves. In: Report of the Fourteenth Meeting of the British Association for the Advancement of Science, York, John Murray, London, pp. 311–390.
[37] Stokes, G.G., (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society 8, 441–455.
[38] Svendsen, I.A., Justesen, P., (1984). Forces on slender cylinders from very high and spilling breakers. In: Proceedings of the Symposium on Description and Modelling of Directional Seas, Paper D-7-1. Technical University of Denmark 16 pp.
[39] Synolakis, C. E. (1986), The runup of long waves, Ph.D. thesis, California Inst. of Technol., Calif.
[40] Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545.
[41] Synolakis, C. E., & Deb, M. K. (1988). On the maximum runup of cnoidal waves. In Coastal Engineering 1988 (pp. 553-565).
[42] Synolakis, C. E., Deb, M. K., & Skjelbreia, J. E. (1988). The anomalous behavior of the runup of cnoidal waves. The Physics of fluids, 31(1), 3-5.
[43] Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1923), 99-112.
[44] Trias, A. P. L., & Cook, A. D. (2021). Future directions in disaster governance: Insights from the 2018 Central Sulawesi Earthquake and Tsunami response. International Journal of Disaster Risk Reduction, 58, 102180.
[45] Ursell, F., Dean, R. G., & Yu, Y. S. (1960). Forced small-amplitude water waves: a comparison of theory and experiment. Journal of fluid mechanics, 7(1), 33-52.
[46] Whitham, G.B., (1974). Linear and Nonlinear Waves. John Wiley & Sons.
[47] Wu, Y. T., Higuera, P., & Liu, P. L. F. (2021). On the evolution and runup of a train of solitary waves on a uniform beach. Coastal Engineering, 170, 104015.
[48] Xuan, R., Wu, W., Liu, H., (2013). An experimental study on runup of two solitary waves on plane beaches. Journal of Hydrodynamics, Ser. B 25 (2), 317–320.
[49] Zelt, J.A., (1991). The run-up of non-breaking and breaking solitary waves. Coastal Engineering 15, 205–246.
[50] 羅弘岳 (2019):「多用途長波數值模型的優化、驗證、與應用」,108年科技部專題研究計畫。
[51] 林立剛 (2021):「N型波傳遞之數值模擬與實驗驗證」,國立台灣大學工程科學與海洋工程研究所碩士論文,台北。
[52] 黄俊瑞 (2022):「前導下沉N型海嘯波之傳遞與溯升」,國立台灣大學工程科學與海洋工程研究所碩士論文,台北。
[53] 吳祚任 (2007): 「終極天災:海嘯」,國立中央大學水文與海洋科學研究所網站。http://tsunami.ihs.ncu.edu.tw/tsunami/tsunami.htm
[54] 中央氣象局地震測報中心,海嘯資訊。https://scweb.cwb.gov.tw/zh-tw/tsunami/taiwan
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89050-
dc.description.abstract臺灣四面環海且位於環太平洋地震帶上,海嘯一直都是潛在的天然災害之一,在早期的海嘯研究當中,大多以孤立波作為海嘯波替代模型進行研究,後來有學者發現前導下沉N型波因具有一領先波谷,能夠模擬海嘯來臨前的海水退位現象,因此被認為比起孤立波更適合當作海嘯波替代模型。本研究在臺灣大學工程科學及海洋工程學系總長30公尺的二維斷面水槽進行實驗,基於N型波造波理論於1:10斜坡進行溯升實驗,探討孤立波與N型波之間的溯升差異。
本研究共蒐集了24組孤立波和88組N型波溯升結果以及波破碎情形,並探討斜板置於距離造波板13.5公尺以及7公尺之結果比較,而根據實驗結果,可將N型波溯升表現分類為:一般N型波、段波狀N型波、陡峭型N型波以及強烈破碎N型波四種類別,對於一般非破碎N型波其溯升值會與孤立波相當,而有破碎之一般N型波溯升值則會小於孤立波,這是受到前導下沉波谷的影響使得N型波產生較強烈的破碎導致能量耗散。而段波狀N型波大部分的溯升值會大於孤立波,只有少數段波特徵不明顯或是沒有前導下沉波谷導致波形變成數個分離孤立波,其溯升值會小於或等於孤立波。陡峭形N型波在非破碎的情況下溯升值會大於孤立波,而強烈破碎N型波因破碎運動強烈使溯升前線混亂,進而導致溯升值無統一趨勢。綜觀13.5公尺以及7公尺的溯升結果,排除因傳遞距離過短受到反射波影響溯升結果之後皆可得到相似的分類,可以認定無論傳播距離遠近,皆能透過N型波上斜坡前的最終波形來判斷與孤立波溯升值之間的關係。
zh_TW
dc.description.abstractTaiwan is an island located on the Pacific Ring of Fire, and tsunamis have always been one of the potential natural disasters. In the early studies of tsunami, solitary waves were commonly used as an alternative model. However, some scholars found that the leading depression of N-waves have a leading wave trough, which can simulate the water drawdown before the arrival of a tsunami. Therefore, N-waves are considered more suitable alternative model for tsunami waves than solitary waves. This research investigates the propagation and runup of N-waves using experimental methods. The experiments are conducted in a two-dimensional wave maker flume with a total length of 30 meters at the Department of Engineering Science and Ocean Engineering, National Taiwan University. Based on the theoretical formulation for the generation of N-waves on a 1 on 10 slope to investigate the differences between solitary waves and N-waves.
This study collected 24 sets of solitary wave data and 88 sets of N-wave data, including runup and wave breaking conditions, to compare the results of placing the plate at distances of 13.5 meters and 7 meters from the wave generator. According to the experimental results, the N-wave runup performance can be classified into four categories: general N-waves, bore-like N-waves, steep N-waves and strong breaking N-waves. For general non-breaking N-waves, their runup values are comparable to solitary waves. However, for breaking general N-waves, their runup values are smaller than solitary waves. This is due to the influence of the leading depression wave trough, which leads to more intense wave breaking and energy dissipation in N-wave. For most of the bore-like N-waves, their runup values are greater than solitary waves. Only a few have less bore characteristic or lacking a leading depression wave trough that causes the waveform to become several separated solitary waves, with their runup values being less than or equal to solitary waves. Steep N-waves exhibit higher runup values than solitary waves in the non-breaking condition, while strong breaking N-waves due to strong breaking, which lead to uneven runup lines and inconsistent trends in runup values. By observing the runup results at distances of 13.5 meters and 7 meters, after excluding the influence of reflected waves due to short propagation distances, similar classifications can be obtained. It can be concluded that regardless of the propagation distance, the relationship between runup values and solitary waves can be determined by examining the final wave shape in front of the slope in N-waves.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:55:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:55:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xii
1 第一章 緒論 1
1.1 研究目的與動機 1
1.2 海嘯研究文獻回顧 2
2 第二章 N型海嘯波 7
2.1 N型波定義 7
2.2 N型波造波理論 8
2.3 N型波控制變數 12
2.4 孤立波定義 13
2.5 孤立波造波理論 14
3 第三章 實驗設備 16
3.1 實驗水槽 16
3.1.1 造波設備 17
3.1.2 溯升斜板 21
3.1.3 資料擷取系統 23
3.2 操作流程 25
3.2.1 影像擷取系統 28
3.3 數據處理 30
3.3.1 水位歷時圖 30
3.3.2 影像處理 32
4 第四章 實驗結果 36
4.1 孤立波驗證 36
4.2 斜板於13.5公尺實驗結果 38
4.2.1 一般N型波 39
4.2.2 段波狀N型波 42
4.2.3 陡峭型N型波 48
4.2.4 強烈破碎N型波 51
4.3 斜板於7公尺實驗結果 52
4.3.1 孤立波結果 53
4.3.2 一般N型波 55
4.3.3 段波狀N型波 56
4.3.4 陡峭型N型波 59
4.3.5 強烈破碎N型波 61
4.4 斜板於水槽13.5公尺與7公尺差異 62
5 第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
6 參考文獻 67
7 附錄 71
A.1 孤立波造波參數 71
A.2 N型波造波參數 72
A.3 斜板置於水槽13.5m之孤立波實驗結果 74
A.4 斜板置於水槽13.5m之N型波實驗結果 75
A.5 斜板置於水槽7m之孤立波實驗結果 79
A.6 斜板置於水槽7m之N型波實驗結果 80
-
dc.language.isozh_TW-
dc.subject碎波zh_TW
dc.subject波浪溯升zh_TW
dc.subject水槽實驗zh_TW
dc.subjectN型波zh_TW
dc.subject海嘯波zh_TW
dc.subject孤立波zh_TW
dc.subjectN-waveen
dc.subjectWave flume experimenten
dc.subjectTsunami waveen
dc.subjectSolitary waveen
dc.subjectWave breakingen
dc.subjectRunupen
dc.title前導下沉N型海嘯波於不同傳遞距離之溯升zh_TW
dc.titleRunup of leading depression N-waves at different propagation distancesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee戴璽恆;吳昀達;莊偉良zh_TW
dc.contributor.oralexamcommitteeHsi-Heng Dai;Yun-Ta Wu;Wei-Liang Chuangen
dc.subject.keyword海嘯波,N型波,孤立波,水槽實驗,波浪溯升,碎波,zh_TW
dc.subject.keywordTsunami wave,N-wave,Solitary wave,Wave flume experiment,Runup,Wave breaking,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202303411-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved