請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89049
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志軒 | zh_TW |
dc.contributor.advisor | Chih-Hsuan Chen | en |
dc.contributor.author | 周健權 | zh_TW |
dc.contributor.author | Kian-Kenn Chew | en |
dc.date.accessioned | 2023-08-16T16:55:06Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 1. Otsuka, K. and C.M. Wayman, Shape memory materials. 1999: Cambridge university press.
2. Nam, T.H., et al., Cu-Content Dependence of Shape Memory Characteristics in Ti-N-Cu Alloys. Materials Transactions, JIM, 1990. 31(11): p. 959-967. 3. Nam, T.H., et al., Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Materials Transactions, JIM, 1990. 31(12): p. 1050-1056. 4. Li, J., et al., The microstructure of Ti-Ni-Cu shape memory thin films: a review. Materials Science and Technology, 2022. 38(3): p. 143-158. 5. Delville, R., et al., Transmission electron microscopy investigation of microstructures in low-hysteresis alloys with special lattice parameters. Scripta Materialia, 2009. 60(5): p. 293-296. 6. Ishida, A., M. Sato, and K. Ogawa, Microstructure of annealed Ti48. 5NiCux thin films. Philosophical Magazine, 2008. 88(16). 7. Fukuda, T., et al., Martensitic Transformation Behavior of a Shape Memory Ti-40.5Ni-10Cu Alloy Affected by the C11-type Precipitates. Materials Transactions, JIM, 1996. 37(10): p. 1540-1546. 8. Fukuda, T., et al., Shape Memory Behavior of Ti-40.5Ni-10Cu Alloy Affected by C11-Type Precipitates. Materials Transactions, JIM, 1997. 38(2): p. 107-111. 9. Zhang, J., et al., Dislocation induced strain glass in Ti50Ni45Fe5 alloy. Acta Materialia, 2016. 120: p. 130-137. 10. Lin, H., P. Hua, and Q. Sun, Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi. Scripta Materialia, 2022. 209: p. 114371. 11. Chen, H., et al., Elastocaloric effect with a broad temperature window and low energy loss in a nanograin Ti-44Ni-5Cu-1Al (at·%) shape memory alloy. Physical Review Materials, 2021. 5(1): p. 015201. 12. Chen, H., et al., Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Materialia, 2018. 158: p. 330-339. 13. Ölander, A., An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 1932. 54(10): p. 3819-3833. 14. Suoninen, E.J., Investigation of the martensitic transformation in metastable beta brass. 1954, Massachusetts Institute of Technology. 15. Genevray, R.M., The martensitic transformation in muntz metal. 1953, Massachusetts Institute of Technology. 16. Chen, C., Some characteristics of the martensite transformation of Cu-Al-Ni alloys. JOM, 1957. 9: p. 1202-1203. 17. Van Humbeeck, J., Non-medical applications of shape memory alloys. Materials Science and Engineering: A, 1999. 273: p. 134-148. 18. Sun, L., et al., Stimulus-responsive shape memory materials: a review. Materials & Design, 2012. 33: p. 577-640. 19. Bil, C., K. Massey, and E.J. Abdullah, Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 2013. 24(7): p. 879-898. 20. Hartl, D.J. and D.C. Lagoudas, Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007. 221(4): p. 535-552. 21. Kheirikhah, M.M., S. Rabiee, and M.E. Edalat, A review of shape memory alloy actuators in robotics. RoboCup 2010: Robot Soccer World Cup XIV 14, 2011: p. 206-217. 22. Sreekumar, M., et al., Critical review of current trends in shape memory alloy actuators for intelligent robots. Industrial Robot: An International Journal, 2007. 23. Kahn, H., M. Huff, and A. Heuer, The TiNi shape-memory alloy and its applications for MEMS. Journal of Micromechanics and Microengineering, 1998. 8(3): p. 213. 24. Fujita, H. and H. Toshiyoshi, Micro actuators and their applications. Microelectronics Journal, 1998. 29(9): p. 637-640. 25. Schetky, L.M., Miscellaneous Applications of Intermetallic Compounds. MRS Bulletin, 1996. 21(5): p. 50-55. 26. Huang, W., On the selection of shape memory alloys for actuators. Materials & Design, 2002. 23(1): p. 11-19. 27. Alaneme, K.K. and E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 2016. 19(3): p. 1582-1592. 28. Firstov, G.S., J. Van Humbeeck, and Y.N. Koval, High-temperature shape memory alloys: Some recent developments. Materials Science and Engineering: A, 2004. 378(1): p. 2-10. 29. Otsuka, K. and X. Ren, Recent developments in the research of shape memory alloys. Intermetallics, 1999. 7(5): p. 511-528. 30. Wu, C.-T., Research on the Pseudoelasticity and Elastocaloric Effect of Aged Ti49Ni41Cu10 Shape Memory Alloy, in Department of Mechanical Engineering College of Engineering. 2021, National Taiwan University. p. 137. 31. 李芝媛、吳錫侃, 淺談形狀記憶合金. 科儀新知第十六卷, 1995: p. 6. 32. Nishida, M. and T. Honma, All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging. Scripta metallurgica, 1984. 18(11): p. 1293-1298. 33. Schroeder, T. and C. Wayman, The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys. Acta Metallurgica, 1977. 25(12): p. 1375-1391. 34. Schroeder, T. and C. Wayman, The two-way shape memory effect and other “training” phenomena in Cu Zn single crystals. Scripta metallurgica, 1977. 11(3): p. 225-230. 35. Enami, K., A. Nagasawa, and S. Nenno, Reversible shape memory effect in Fe-base alloys. Scripta Metallurgica, 1975. 9(9): p. 941-948. 36. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 2005. 50(5): p. 511-678. 37. Miyazaki, S., K. Otsuka, and Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scripta Metallurgica, 1981. 15(3): p. 287-292. 38. Yang, Z., et al., Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys. Acta Materialia, 2017. 127: p. 33-42. 39. Schmidt, M., A. Schütze, and S. Seelecke, Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span. APL Materials, 2016. 4(6): p. 064107. 40. Xie, X., et al., Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy. Materials Science and Engineering: A, 2016. 671: p. 32-47. 41. Zhou, M., et al., The elastocaloric effect of Ni50. 8Ti49. 2 shape memory alloys. Journal of Physics D: Applied Physics, 2018. 51(13): p. 135303. 42. H.O. T.B. Massalski, P.R.S., L. Kacprzak, Binary Alloys Phase Diagrams. 1990. 12. 43. Kudoh, Y., et al., Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metallurgica, 1985. 33(11): p. 2049-2056. 44. Buhrer, W., et al., Powder neutron diffraction study of nickel-titanium martensite. Journal of Physics F: Metal Physics, 1983. 13(5): p. L77. 45. Michal, G. and R. Sinclair, The structure of TiNi martensite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1981. 37(10): p. 1803-1807. 46. Otsuka, K., T. Sawamura, and K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite. Physica status solidi (a), 1971. 5(2): p. 457-470. 47. Hehemann, R.F. and G.D. Sandrock, Scr. Metall., 1971. 5: p. 457. 48. Saburi, T., M. Yoshida, and S. Nenno, 1984. 18: p. 363. 49. Miyazaki, S., et al., The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals. Scripta metallurgica, 1984. 18(9): p. 883-888. 50. Hara, T., et al., Structural study of R-phase in Ti-50.23 at.% Ni and Ti-47.75 at.% Ni-1.50 at.% Fe alloys. Materials Transactions, JIM, 1997. 38(1): p. 11-17. 51. Tadaki, T. and C. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part II. Morphology and crystal structure of martensites. Metallography, 1982. 15(3): p. 247-258. 52. Shugo, Y., Two-Step Martensite Transformation and Yield Strenght in TiNi0.8Cu0.2. 1987. 53. Goo, E. and R. Sinclair, The B2 to R transformation in Ti50Ni47Fe3 and Ti49. 5Ni50. 5 alloys. Acta Metallurgica, 1985. 33(9): p. 1717-1723. 54. Miyazaki, S. and K. Otsuka, Deformation and transition behavior associated with theR-phase in Ti-Ni alloys. Metallurgical Transactions A, 1986. 17(1): p. 53-63. 55. Miyazaki, S. and K. Otsuka, Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy. Philosophical Magazine A, 1985. 50(3): p. 393-408. 56. Hwang, C., et al., Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase. Philosophical Magazine A, 1983. 47(1): p. 9-30. 57. Hara, T., et al., Structural Study of R-Phase in Ti-50.23 at.%Ni and Ti-47.75 at.%Ni-1.50 at.%Fe Alloys. Materials Transactions, 1997. 38: p. 11-17. 58. Fan, G., et al., Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys. Acta Materialia, 2004. 52: p. 4351-4362. 59. Zhang, J., et al., The Nature of Reversible Change in Ms Temperatures of Ti-Ni Alloys with Alternating Aging. Materials Transactions, JIM, 1999. 40(12): p. 1367-1375. 60. Chang, S., S. Wu, and G. Chang, Grain size effect on multiple-stage transformations of a cold-rolled and annealed equiatomic TiNi alloy. Scripta materialia, 2005. 52(12): p. 1341-1346. 61. Nakayama, H., K. Tsuchiya, and M. Umemoto, Crystal refinement and amorphisation by cold rolling in tini shape memory alloys. Scripta Materialia, 2001. 44(8): p. 1781-1785. 62. Wu, S.K. and H.C. Lin, Recent development of TiNi-based shape memory alloys in Taiwan. Materials Chemistry and Physics, 2000. 64(2): p. 81-92. 63. Miyamoto, H., et al., Two-stage B2–B19–B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation. Scripta materialia, 2005. 53(2): p. 171-175. 64. Fukuda, T., et al., Martensitic transformation behavior of a shape memory Ti–40.5 Ni–10Cu alloy affected by the C11b-type precipitates. Materials transactions, JIM, 1996. 37(10): p. 1540-1546. 65. Nam, T.H., et al., Effect of Thermo-mechanical Treatment on Shape Memory Characteristics in a Ti-40Ni-10Cu (at%) Alloy. Materials Transactions, JIM, 1991. 32(9): p. 814-820. 66. Miyazaki, S. and K. Otsuka, Deformation and transition behavior associated with the r-phase in ti-ni alloys. Metallurgical transactions. A, Physical metallurgy and materials science, 1986. 17 A(1): p. 53-63. 67. Gao, Z.Y., M. Sato, and A. Ishida, Microstructure and shape memory behavior of annealed Ti44.5Ni55.5−XCuX (X=15.3–32.8) thin films with low Ti content. Journal of Alloys and Compounds, 2015. 619: p. 389-395. 68. Cui, J., et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Materials, 2006. 5(4): p. 286-290. 69. Bhattacharya, K., et al., Crystal symmetry and the reversibility of martensitic transformations. Nature, 2004. 428(6978): p. 55-59. 70. Kahn, H., M.A. Huff, and A.H. Heuer, The TiNi shape-memory alloy and its applications for MEMS. Journal of Micromechanics and Microengineering, 1998. 8(3): p. 213. 71. Strnadel, B., et al., Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 1995. 202: p. 148-156. 72. Kim, J.-h., et al., Microstructure, transformation behavior and superelasticity of an aged Ti-40Ni-12Cu (at%) shape memory alloy. Journal of Alloys and Compounds, 2022. 900: p. 163390. 73. Kim, J.-H., et al., Microstructures and mechanical behavior of Ti-(38+ x) Ni-12Cu (at%)(x= 0∼ 3) alloys. Journal of Alloys and Compounds, 2023. 938: p. 168664. 74. Shim, J.-h., et al., Improvement in the superelasticity of a Ti–35.5 Ni–15Cu (at.%) alloy using Ti (Ni, Cu) 2 phase. Materials Science and Engineering: A, 2022. 847: p. 143346. 75. Bataillard, L., J.-E. Bidaux, and R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations. Philosophical magazine A, 1998. 78(2): p. 327-344. 76. Allafi, J.K., X. Ren, and G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Materialia, 2002. 50(4): p. 793-803. 77. Tadaki, T., et al., Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy. Transactions of the Japan institute of metals, 1986. 27(10): p. 731-740. 78. Khalil-Allafi, J., A. Dlouhy, and G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Materialia, 2002. 50(17): p. 4255-4274. 79. Dlouhy, A., J. Khalil-Allafi, and G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys--an in-situ transmission electron microscopy investigation. Philosophical Magazine, 2003. 83(3): p. 339-363. 80. Fan, G., et al., Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys. Acta Materialia, 2004. 52(14): p. 4351-4362. 81. Lin, K.-N. and S.-K. Wu, Multi-stage transformation in annealed Ni-rich Ti49Ni41Cu10 shape memory alloy. Intermetallics, 2010. 18(1): p. 87-91. 82. Dang, P., et al., Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49. 2Ni40. 8Cu10 alloy. Acta Materialia, 2022. 229: p. 117802. 83. Lin, K.-N., S.-K. Wu, and L.-M. Wu, Martensitic transformation of cold-rolled and annealed Ti50Ni40Cu10 shape memory alloy. Materials transactions, 2009. 50(11): p. 2637-2642. 84. Fukuda, T., et al., Shape memory behavior of Ti–40.5 Ni–10Cu alloy affected by C11b-type precipitates. Materials Transactions, JIM, 1997. 38(2): p. 107-111. 85. Ishida, A., M. Sato, and K. Ogawa, Microstructure of annealed Ti48. 5Ni (51.5–x) Cu x (x= 6.2–33.5) thin films. Philosophical Magazine, 2008. 88(16): p. 2427-2438. 86. Sarkar, S., X. Ren, and K. Otsuka, Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti50-xNix. Physical Review Letters, 2005. 95(20): p. 205702. 87. Tušek, J., et al., Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling. Shape Memory and Superelasticity, 2016. 2(4): p. 317-329. 88. Tagiltsev, A.I., et al., Two-way shape memory effect in stress-induced martensite aged Ni50.3Ti32.2Hf17.5 alloy. Materials Letters, 2020. 268: p. 127589. 89. Wang, D., et al., Strain Glass State, Strain Glass Transition, and Controlled Strain Release. Annual Review of Materials Research, 2022. 52(1): p. 159-187. 90. Liu, C., Y. Ji, and X. Ren, Strain Glass and Novel Properties. Shape Memory and Superelasticity, 2019. 5: p. 299 - 312. 91. Zhou, Y., et al., Strain glass in doped Ti50(Ni50−xDx) (D=Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Materialia, 2010. 58(16): p. 5433-5442. 92. Liang, Q., et al., Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Materialia, 2022. 231: p. 117890. 93. ji, Y., et al., Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys. Physical Review B, 2013. 87. 94. Ren, X., et al., Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philosophical Magazine, 2010. 90(1-4): p. 141-157. 95. Xu, S., et al., Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys. Acta Materialia, 2021. 218: p. 117232. 96. Zhang, Z., et al., Nonhysteretic Superelasticity of Shape Memory Alloys at the Nanoscale. Physical Review Letters, 2013. 111(14): p. 145701. 97. Zhang, J., et al., High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling. Materials & Design, 2020. 193: p. 108875. 98. Zheng, Y.F., et al., The microstructure and linear superelasticity of cold-drawn TiNi alloy. Materials Science and Engineering: A, 2000. 279(1): p. 25-35. 99. Kockar, B., et al., Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. Journal of Nuclear Materials, 2007. 361(2): p. 298-305. 100. Delville, R., et al., Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Materialia, 2010. 58(13): p. 4503-4515. 101. Sergueeva, A.V., et al., Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Materials Science and Engineering: A, 2003. 339(1): p. 159-165. 102. Prokoshkin, S.D., et al., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Materialia, 2005. 53(9): p. 2703-2714. 103. Ahadi, A. and Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size. Applied Physics Letters, 2013. 103: p. 021902. 104. Tsuchiya, K., et al., Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scripta Materialia, 2009. 60(9): p. 749-752. 105. Tsuchiya, K., et al., Martensitic Transformation in Nanostructured TiNi Shape Memory Alloy Formed via Severe Plastic Deformation[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing - MATER SCI ENG A-STRUCT MATER, 2006. 438: p. 643-648. 106. Chen, J., L. Lei, and G. Fang, Grain-size effects on the temperature-dependent elastocaloric cooling performance of polycrystalline NiTi alloy. Journal of Alloys and Compounds, 2022. 927: p. 166951. 107. Tušek, J., et al., Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling. Acta Materialia, 2018. 150: p. 295-307. 108. Engelbrecht, K., et al., Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling. APL Materials, 2016. 4(6). 109. Nishida, M., C.M. Wayman, and T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys. Metallurgical Transactions A, 1986. 17: p. 1505-1515. 110. Frenzel, J., et al., Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2007. 55(4): p. 1331-1341. 111. Fei, G. and W. Hua-Ming, Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Transactions of Nonferrous Metals Society of China, 2007. 17(6): p. 1358-1362. 112. Gao, F. and H. Wang, Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Intermetallics, 2008. 16(2): p. 202-208. 113. Shim, J.-h., et al., Improvement in the superelasticity of a Ti–35.5Ni–15Cu (at.%) alloy using Ti(Ni,Cu)2 phase. Materials Science and Engineering: A, 2022. 847: p. 143346. 114. Yoshida, I., et al., Internal friction of Ti–Ni–Cu ternary shape memory alloys. Materials Science and Engineering: A, 2004. 370(1-2): p. 444-448. 115. Ren, X., Strain glass and ferroic glass–Unusual properties from glassy nano‐domains. physica status solidi (b), 2014. 251(10): p. 1982-1992. 116. Liang, Q., et al., Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Materialia, 2022. 231: p. 117890. 117. Chen, H., et al., Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement. Scripta Materialia, 2019. 162: p. 230-234. 118. Prokofiev, E.A., et al., Suppression of Ni4Ti3 Precipitation by Grain Size Refinement in Ni‐Rich NiTi Shape Memory Alloys. Advanced engineering materials, 2010. 12(8): p. 747-753. 119. Evirgen, A., et al., Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Materialia, 2016. 121: p. 374-383. 120. Chou, D.-S., Research on MartensiticTransformation Behaviours and Mechanical Properties of Ti50Ni41Cu7Co2 Shape Memory Alloy, in Department of Mechanical Engineering 2023, National Taiwan University. p. 131. 121. Cahn, J.W., Nucleation on dislocations. Acta Metallurgica, 1957. 5(3): p. 169-172. 122. Dutta, B., E.J. Palmiere, and C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta materialia, 2001. 49(5): p. 785-794. 123. Ishida, A., M. Sato, and Z. Gao, Effects of Ti content on microstructure and shape memory behavior of TixNi (84.5− x) Cu15. 5 (x= 44.6–55.4) thin films. Acta materialia, 2014. 69: p. 292-300. 124. Ishida, A., et al., Shape memory behavior of Ti–Ni–Cu thin films. Materials Science and Engineering: A, 2006. 438: p. 683-686. 125. Yu, C., et al., Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing. Acta Materialia, 2016. 115: p. 35-44. 126. Inoue, H., N. Miwa, and N. Inakazu, Texture and shape memory strain in TiNi alloy sheets. Acta Materialia, 1996. 44(12): p. 4825-4834. 127. Zarnetta, R., et al., Identification of quaternary shape memory alloys with near‐zero thermal hysteresis and unprecedented functional stability. Advanced Functional Materials, 2010. 20(12): p. 1917-1923. 128. Zhang, J., et al., Leaf-like dislocation substructures and the decrease of martensitic start temperatures: A new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys. Acta materialia, 2012. 60(5): p. 1999-2006. 129. Al Hasan, N.M., et al., Combinatorial synthesis and high-throughput characterization of microstructure and phase transformation in Ni–Ti–Cu–V quaternary thin-film library. Engineering, 2020. 6(6): p. 637-643. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89049 | - |
dc.description.abstract | 本研究對Ti48.5Ni36.5Cu15塊材進行時效與冷滾再時效處理,並針對其相變態行為、顯微結構、熱循環穩定性、超彈性與形狀記憶效應進行探討。Ti48.5Ni36.5Cu15 經過1050°C一小時固溶後,結構中的Ti(Ni,Cu)2完全回熔於基地內。固溶後的Ti48.5Ni36.5Cu15經過冷滾達到27%厚度減量,晶粒細化與差排抑制了麻田散體的產生,試片進入應變玻璃態。固溶與冷滾後的試片在300°C、400°C、500°C皆有相變態溫度上升的現象,顯示Ti(Ni,Cu)2析出於結構當中。固溶處理後試片經過400°C一小時時效處理,能析出長度為3.5nm,寬度為0.6nm的片狀奈米Ti(Ni,Cu)2析出。厚度減量27%的冷滾試片在經過400°C一小時時效處理後,擁有長度為550nm,寬度為60nm的奈米晶粒,且在垂直於滾壓方向(ND)顯示<111>織構(texture)。該試片在第150次熱循環與第1次循環中,Mp溫度下降0.2°C,擁有良好的熱循環穩定性。形狀記憶效應試驗中,該試片在500MPa應力下達到5.3%應變,只有0.08%殘留應變。 | zh_TW |
dc.description.abstract | This research investigated aging treatment and cold rolling followed by aging treatment of Ti48.5Ni36.5Cu15. The phase transformation behaviors, microstructures, thermal cyclic stability, superelasticity and memory effect are studied. After solution treatment at 1050°C for 1 hour. Ti(Ni,Cu)2 phase completely dissolved into the matrix. Cold-rolled Ti48.5Ni36.5Cu15 with 27% thickness reduction contains nanograins and dislocations which suppress the formation of martensite and turn the specimen into strain glass state. Both solution-treated and cold-rolled specimens undergone increment in transformation temperature after aging in 300°C, 400°C and 500°C which indicates the formation of Ti(Ni,Cu)2 precipitates in both structures. Solution treated specimen followed by 400°C 1 hr aging precipitates plate-like nanoscale Ti(Ni,Cu)2 with length of 3.5nm and width of 0.6nm. Cold-rolled specimen with 27% thickness reduction followed by 400°C 1 hr aging contains nanograin with legth of 550nm and width of 60nm. It shows <111> texture on normal direction. The specimen experienced a temperature drop of 0.2°C in Mp between the 1st and 150th cycle indicated good thermal cyclic stability. In shape memory effect experiment, the specimen achieved a total strain of 5.3% with only 0.08% irrecoverable strain under a stress of 500MPa. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:55:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:55:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 前言 1 第二章 文獻回顧 2 2.1形狀記憶合金簡介 2 2.2麻田散體相變態 4 2.3形狀記憶效應 6 2.4超彈性 9 2.5彈熱效應 11 2.6 TiNi基形狀記憶合金結構與特性 12 2.7 TiNi合金中以Cu取代Ni之影響 14 2.8 TiNiCu合金中Ti(Ni,Cu)2相及固溶處理之影響 15 2.9析出物之影響 16 2.10應變玻璃簡介 19 2.11應變玻璃的原理 20 2.12冷加工導入差排 22 第三章 實驗方法 24 3.1 合金配置與熔煉 24 3.2 滾壓與固溶處理 25 3.3時效與退火處理 26 3.4 相變態溫度量測 26 3.5光學顯微鏡(Optical Microscope, OM) 26 3.6掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 27 3.7穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 27 3.8 X光繞射儀(X-ray Diffraction analysis, XRD) 27 3.9 顯微維克式硬度測試(Vickers microhardness) 28 3.10拉伸實驗 28 3.11記憶效應實驗 29 3.12實驗流程 29 第四章 實驗結果與討論 30 4.1固溶處理 30 4.1.1固溶之微結構與成份結果 30 4.1.2固溶之相變溫度結果 35 4.2冷滾及時效對相變態溫度之影響 36 4.2.1冷滾之相變溫度結果 36 4.2.2 300°C時效處理之相變溫度結果 39 4.2.3 400°C時效處理之相變溫度結果 44 4.2.4 500°C時效處理之相變溫度結果 48 4.2.5 300°C、400°C與500°C時效效果討論 51 4.3 顯微結構觀察與檢測 52 4.3.1 CR0%與CR27%試片降溫之XRD結果 52 4.3.2 CR0%時效之XRD結果 55 4.3.3 CR0%與CR27%時效之XRD結果 57 4.4 時效對微結構之影響 58 4.4.1 500°C 96hr時效對顯微結構影響之結果 58 4.4.2 500°C 1hr時效對顯微結構影響之結果 66 4.4.3 400°C 1hr時效對顯微結構影響之結果 69 4.5無應力熱循環測試結果 72 4.6超彈性 75 4.7形狀記憶效應 80 4.7.1 CR0% 形狀記憶效應 80 4.7.2 CR0% 400 1hr 形狀記憶效應 83 4.7.3 CR27% 400 1hr 形狀記憶效應 85 第五章 結論 88 參考文獻 90 | - |
dc.language.iso | zh_TW | - |
dc.title | Ti48.5Ni36.5Cu15形狀記憶合金塊材 冷滾與時效處理之顯微結構與機械性質研究 | zh_TW |
dc.title | Research on Microstructures and Mechanical Properties of Coll-Rolled and Aged Ti48.5Ni36.5Cu15 Shape Memory Alloy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林新智;陳建彰 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Chih Lin;Jian-Zhang Chen | en |
dc.subject.keyword | TiNiCu 形狀記憶合金,Ti(Ni,Cu)2析出,時效處理,熱循環穩定性,形狀記憶效應,冷滾,退火, | zh_TW |
dc.subject.keyword | TiNiCu shape memory alloy,Ti(Ni,Cu)2 precipitate,aging treatment,thermal cyclic stability,shape memory effect,cold-roll,annealing, | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202302997 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 7.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。