Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89040
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor羅清華zh_TW
dc.contributor.advisorChing-Hua Loen
dc.contributor.author羅允杰zh_TW
dc.contributor.authorYun-Chieh Loen
dc.date.accessioned2023-08-16T16:52:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation何春蓀 (1986), 臺灣地質概論: 臺灣地質圖說明書,經濟部中央地質調查所出版,153頁
何恭睿(2014),大南澳片岩的構造演化歷史-以和平、萬榮與南部橫貫公路為例。國立臺北科技大學工程科技研究所,博士論文,95頁。
林忠諺 (2019), 台灣東部銅門至壽豐地區太魯閣帶及玉里帶的剝露歷史與變質溫度研究。國立中正大學地震研究所,碩士論文,102頁。
邵文佑(2015)。利用鋯石鈾鉛定年與鉿同位素組成探討台灣東部火成岩之岩石成因。國立臺灣大學地質科學研究所,博士論文,287頁。
紀文榮(1982)。臺灣利吉層與墾丁層內之超微化石及其在地質構造上之意義。地質,第4卷第1期, 第99-114頁
胡賢能&詹新甫(1984)。台灣南迴鐵路沿線地區板岩系地層之構造研究。經濟部中央地質調查所特刊,第三號,第25-43頁
徐鐵良(1976)。臺灣海岸山脈中的利吉混同層。臺灣省地質調查所彙刊,第25號, 第87-95頁
馬廷誠(2017)。台灣東部玉里帶清水溪地區的剝露機制。國立中正大學地球與環境科學研究所,碩士論文,128頁。
張靖(2002)。恆春半島大梅溪斷層兩側超微化石生物地層之研究。國立成功大學地球科學系碩博士班,碩士論文,共62頁。
張碩芳 & 邵屏華(2008)。花蓮瑞穗地區藍閃石片岩之特性與成因。鑛冶: 中國鑛冶工程學會會刊, 52(4),第 34-45頁。
陳文山(2009)。海岸山脈火山島弧與碰撞盆地的地層架構與年代。西太平洋地質科學, 第9卷,第67-97頁。
陳文山 & 王源(1996)。臺灣東部海岸山脈地質。經濟部中央地貭調查所,臺灣地質系列第7號,共101頁。
陳文山, 李偉彰, 黃能偉, 顏一勤, 楊志成, 楊小青, . . . 宋時驊(2005)。恆春半島增積岩體的構造與地層特性:全新世恆春斷層的活動性。西太平洋地質科學,第五卷,第129-154頁。
陳文山, 鄭穎敏, & 黃奇瑜(1985)。臺灣南部恆春半島之地質。地質,第6卷,第2期,第47-75頁。
陳欽閔 (2001)。台灣花蓮之岩石學初步研究。國立成功大學地球科學系碩博士班,碩士論文,88頁。
陳肇夏 (1998)。台灣的變質岩。經濟部中央地質調查所出版,臺灣地質系列,第十一號,共356頁。
葉芝穎(2019)。東台灣玉里帶變質沉積岩之峰期溫壓新制約與地質詮釋。國立東華大學自然資源與環境學系,碩士論文,157頁。
簡至暐(2003)。台灣東部海岸山脈利吉混同岩體成因之研究:微體古生物學證據。國立臺灣大學地質科學研究所,碩士論文,110頁。
藍景宏(2011)。萬榮地區構造地塊之岩石成因與全岩地化研究。國立東華大學自然資源與環境學系,碩士論文,174頁。
顏滄波 (1959)。臺灣大南澳片岩之礦物。台灣省地質調查所彙刊,第11號,1-53頁
羅文翰(2018)。玉里帶清水溪地區變質岩的鋯石鈾鉛年代制約與全岩地球化學特性之研究。國立東華大學自然資源與環境學系,碩士論文,136頁
Agard, P., Yamato, P., Jolivet, L., & Burov, E. (2009). Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Science Reviews, 92(1), 53-79.
Allègre, C. J. (2008). Isotope Geology (C. Sutcliffe, Trans.). Cambridge: Cambridge University Press. DOI:10.1017/CBO9780511809323
Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical geology, 192(1), 59-79.
Angelier, J., Chu, H. T., Lee, J. C. and Hu, J. C. (2000) Active faulting and earth-quake risk: The Chihshang Fault case, Taiwan. J. Geodyn.,29, 151–185,2000
Anonymous. (1972) Penrose fieldel conference on ophiolites: Geotimes, v. 17,p. 24-25.
Barrier, E., & Müller, C. (1984). New observations and discussions on the origin and age of the Lichi Mélange:. Memoir of the Geological Society of China, 6, 303-325.
Baziotis, I., Tsai, C.-H., Ernst, W. G., Jahn, B.-M., & Iizuka, Y. (2017). New P–T constraints on the Tamayen glaucophane-bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. Journal of Metamorphic Geology, 35(1), 35-54.
Beckinsale, R. D., & Gale, N. H. (1969). A reappraisal of the decay constants and branching ratio of 40K. Earth and Planetary Science Letters, 6(4), 289-294.
Beyssac, O., Negro, F., Simoes, M., Chan, Y. C., & Chen, Y. G. (2008). High-pressure metamorphism in Taiwan: from oceanic subduction to arc-continent collision? Terra Nova, 20(2), 118-125.
Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y.-G., Chan, Y.-C., & Goffé, B. (2007). Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6).
Biq, C. (1971). Comparison of mélange tectonics in Taiwan and in some other mountain belts. Petrol. Geol. Taiwan 9, 79-106.
Biq, C. (1972). Dual-trench structure in the Taiwan-Luzon region. Proceedings of the Geological Society of China, 15, 65-72.
Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299-6328.
Brown, D., Wu, Y. M., Feng, K. F., Chao, W. A., & Huang, H. H. (2015). Imaging high-pressure rock exhumation in eastern Taiwan. Geology, 43(7), 651-654.
Byrne, T., Chan, Y.-C., Rau, R.-J., Lu, C.-Y., Lee, Y.-H., & Wang, Y.-J. (2011). The arc-continent collision in Taiwan, in “Arc-continent collision: The making of an orogen”, Frontiers in earth sciences. (eds.) D. Brown and P. Ryan (Heidelberg: Springer), 211–243.
Cawood, P. A., & Buchan, C. (2007). Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3), 217-256.
Cawood P. A., Kröner, A., Collins William, J., Kusky Timothy, M., Mooney Walter, D., & Windley Brian, F. (2009). Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), 1-36.
Chang, C.-P., Angelier, J., & Huang, C.-Y. (2009). Evolution of subduction indicated by melanges in Taiwan, in “Subduction zone geodynamics” (Eds.) S. Lallemand and F. Funiciello (Berlin: Springer), 207–225.
Chang, C.-P., Angelier, J., & Lu, C.-Y. (2009). Polyphase deformation in a newly emerged accretionary prism: Folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics, 466(3), 395-408.
Chang, C. P., Angelier, J., & Huang, C. Y. (2000). Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1), 43-62.
Chang, C. P., Angelier, J., Huang, C. Y., & Liu, C. S. (2001). Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, 138(6), 633-651.
Chang, C. P., Angelier, J., Lee, T. Q., & Huang, C. Y. (2003). From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics, 361(1), 61-82.
Chang, L.-S. (1964). A biostratigraphic study of the Tertiary in the Hengchun peninsula, Taiwan, based on smaller Foraminifera (I. Northern Part). Paper presented at the Proc. Geol. Soc. China,9,55-63
Chen, C.-T., Chan, Y.-C., Lo, C.-H., Malavieille, J., Lu, C.-Y., Tang, J.-T., & Lee, Y.-H. (2018). Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences, 152, 80-90.
Chen, C., & Wang, C. (1995). Explanatory notes for the metamorphic facies map of Taiwan, 51 pp. Central Geological Survey, MOEA, Taipei, Taiwan.
Chen, H.-Y., Yang, H.-J., Liu, Y.-H., Huang, K.-F., & Takazawa, E. (2018). Tectonic affinities of the accreted basalts in southern Taiwan. Journal of Asian Earth Sciences, 158, 253-265.
Chen, W.-H., Huang, C.-Y., Yan, Y., Dilek, Y., Chen, D., Wang, M.-H., . . . Yu, M. (2017). Stratigraphy and provenance of forearc sequences in the Lichi Mélange, Coastal Range: Geological records of the active Taiwan arc-continent collision. Journal of Geophysical Research: Solid Earth, 122(9), 7408-7436.
Chen, W.-S., Chung, S.-L., Chou, H.-Y., Zugeerbai, Z., Shao, W.-Y., & Lee, Y.-H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206.
Chen, W.-S., & Wang, Y. (1988). Development of deep-sea fan systems in Coastal Range basin, eastern Taiwan. Acta Geologica Taiwanica, 26, 36-56.
Chen, W.-S., Yeh, J.-J., & Syu, S.-J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69.
Chew, D. M., & Spikings, R. A. (2015). Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3), 189-194.
Chi, W.-C., Chen, L., Liu, C.-S., & Brookfield, M. (2014). Development of arc–continent collision mélanges: Linking onshore geological and offshore geophysical observations of the Pliocene Lichi Mélange, southern Taiwan and northern Luzon arc, western Pacific. Tectonophysics, 636, 70-82.
Chi, W.-R., Namson, J. & Suppe, J. (1981). Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Memoir of the Geological Society of China, 4, 155-194.
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I. J., . . . Chu, M.-F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1), 3-19.
Chung, S.-L., & Sun, S.-s. (1992). A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109(1), 133-145.
Clift, P., & Vannucchi, P. (2004). Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2).
Coleman, R. G. O. (1977). Ancient Oceanic Lithosphere? : Springer, Berlin, 229 p.
Coleman, R.G. (1984) The diversity of ophiolites. Geol. Mijnbouw 63, 1099–1108.
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T.-S., Lahfid, A., Daudet, M., . . . Bonzani, M. (2020). Strain Partitioning and Exhumation in Oblique Taiwan Collision: Role of Rift Architecture and Plate Kinematics. Tectonics, 39(4), e2019TC005798.
Cui, Y., Shao, L., Yu, M., & Huang, C. (2021). Formation of Hengchun Accretionary Prism Turbidites and Implications for Deep-water Transport Processes in the Northern South China Sea. Acta Geologica Sinica - English Edition, 95(1), 55-65.
Denne, R. A. (2017). Biostratigraphy. In R. Sorkhabi (Ed.), Encyclopedia of Petroleum Geoscience (pp. 1-20). Cham: Springer International Publishing.
Deschamps, A., Monié, P., Lallemand, S., Hsu, S. K., & Yeh, K. Y. (2000). Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate. Earth and Planetary Science Letters, 179(3), 503-516.
Dickin, A. P. (2018). Radiogenic Isotope Geology (3 ed.). Cambridge: Cambridge University Press. doi:10.1017/9781316163009
Dickinson, W. R. (1995) Forearc basins. In C.J. Busby, R.V. Ingersoll (Eds.) “Tectonics of sedimentary basins”, Blackwell Science Ltd., Cambridge, MA, 221 – 261.
Dilek, Y., & Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3-4), 387-411.
Dilek, Y., & Furnes, H. (2014). Ophiolites and Their Origins. Elements, 10(2), 93-100.
Dilek, Y., & Newcomb, S. (2003). Ophiolite concept and its evolution Ophiolite concept and the evolution of geological thought (Vol. 373, pp. 0): Geological Society of America.
Dumitru, T. A., Wakabayashi, J., Wright, J. E., & Wooden, J. L. (2010). Early Cretaceous transition from nonaccretionary behavior to strongly accretionary behavior within the Franciscan subduction complex. Tectonics, 29(5).
Ernst, W., JG, L., & DE, M. (1981). Multiple metamorphic events recorded in Tailuko amphibolites and associated rocks of the Suao-Nanao area, Taiwan. Mem. Geol. Soc. China 4, 391-441.
Ernst, W. G. (2010). Subduction zone metamorphism – pioneering contributions from the Alps. International Geology Review, 52(10-12), 1021-1039.
Ernst, W.G. & Jahn, B.M. (1987) Crustal accretion and metamorphism in Taiwan, a post-Palaeozoic mobile belt. Philosophical Transactions of the Royal Society of London A321, 129–161.
Fourcade, S., Maury, R., Defant, M. J., & McDermott, F. (1994). Mantle metasomatic enrichment versus arc crust contamination in the Philippines: Oxygen isotope study of Batan ultramafic nodules and northern Luzon arc lavas. Chemical geology, 114(3), 199-215.
Frost, B., & Frost, C. (2019). Essentials of Igneous and Metamorphic Petrology (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/9781108685047
Fuller, C. W., Willett, S. D., Fisher, D., & Lu, C. Y. (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1), 1-24.
Gehrels, G. E., Valencia, V. A., and Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma –mass spectrometry. Geochem. Geophys. Geosystems 9, Q03017.
Hall, R., Fuller, M., Ali, J. R., & Anderson, C. D. (1995). The Philippine Sea Plate: Magnetism and Reconstructions Active Margins and Marginal Basins of the Western Pacific (pp. 371-404).
Hanchar, J. M., & Hoskin, P. W. O. (eds.) (2003) Zircon. In Reviews in Mineralogy and Geochemistry. Mineralogical Society of America monograph Vol. 53. ISBN 0-939950-6
Harlow, G. E. (1994). Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. Journal of Metamorphic Geology, 12(1), 49-68.
Harrison, T. M. (1982) Diffusion of 40Ar in hornblende. Contrib. Mineral. Petrol. 78, 324–331.
Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J., & Heizler, M. T. (2009). Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta, 73(4), 1039-1051.
Hartmann, L. A., & Santos, J. O. S. (2004) Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology 32, 73–76.
Ho, C.S. (1969). Geological significance of potassium-argon ages of the Chimei igneous complex in eastern Taiwan. Bull. Geol. Surv. Taiwan, 20, 63-74.
Hoskin, P. W. O. & Black, L. P. (2000). Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 18, 423–439.
Hsieh, R. B. J., Shellnutt, J. G., & Yeh, M.-W. (2017). Age and tectonic setting of the East Taiwan Ophiolite: implications for the growth and development of the South China Sea. Geological Magazine, 154(3), 441-455.
Huang, C.-Y., Chen, W.-H., Wang, M.-H., Lin, C.-T., Yang, S., Li, X., . . . Harris, R. (2018). Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview. Earth-Science Reviews, 182, 102-140.
Huang, C.-Y., Chien, C.-W., Yao, B., & Chang, C.-P. (2008). The Lichi Mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision. In A. E. Draut, P. D. Clift, & D. W. Scholl (Eds.), Formation and Applications of the Sedimentary Record in Arc Collision Zones (Vol. 436, pp. 0): Geological Society of America.
Huang, C.-Y., Wang, P., Yu, M., You, C.-F., Liu, C.-S., Zhao, X., . . . Yumul, G. P., Jr. (2019). Potential role of strike-slip faults in opening up the South China Sea. National Science Review, 6(5), 891-901.
Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P. B., Lin, C.-W., & Xia, K.-Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1), 31-51.
Huang, C.-Y., Xia, K., Yuan, P. B., & Chen, P.-G. (2001). Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology. Journal of Asian Earth Sciences, 19(5), 619-638.
Huang, C.-Y., Yen, Y., Zhao, Q., & Lin, C.-T. (2012). Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24), 3130-3149.
Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. GSA Bulletin, 118(3-4), 274-288.
Huang, H., Wang, T., Tong, Y., Qin, Q., Ma, X., & Yin, J. (2020). Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 208, 103255.
Huang, P., Wei, C., Dong, J., & Zhang, J. (2023). Two-stage exhumation of high–P rocks from the Yuli Belt, Eastern Taiwan: Insights from the metamorphic evolution in subduction channels. Lithos, 440-441, 107056.
Huang, T.-C., M.-P. Chen & W.-R. Chi (1979) Calcareous nannofossils from the red shale of the ophiolite-mélange complex, eastern Taiwan. Mem. Geol. Soc. China, 3, 131-138.
Itaya, T., & Tsujimori, T. (2015). White mica K–Ar geochronology of Sanbagawa eclogites from Southwest Japan: implications for deformation-controlled K–Ar closure temperature. International Geology Review, 57(5-8), 1014-1022.
Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. (2004) The application of laser ablation inductively coupled plasma mass spectrometry to in-situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69.
Jahn, B.M. (1986). Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 92(2), 194-206.
Jahn, B.M., & Liou, J. (1977). Age and geochemical constraints of glaucophane schists of Taiwan. Mem. Geol. Soc. China 2, 129-140.
Jahn, B.M., Liou, J., & Nagasawa, H. (1981). High pressure metamorphic rocks of Taiwan: REE geochemistry, Rb-Sr ages and tectonic implications. Geol. Soc. China Mem 4, 497-520.
Jahn, B.M., Wu, F., & Chen, B. (2000). Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91(1-2), 181-193.
Johnston, S. T. (2001). The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth and Planetary Science Letters, 193(3), 259-272.
Jourdan, F., & Renne, P. R. (2007). Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochimica et Cosmochimica Acta, 71(2), 387-402.
Juan, V. C., Lo, H.-J., & Chen, C.-H. (1980) Genetic relationships and the emplacement of the exotic basic rocks enclosed in the Lichi mélange, east Coastal Range, Taiwan. Proceedings of the Geological Society of China, 23, 56-68.
Juang, W.S., & Bellon, H. (1984). The potassium-argon dating of andesites from Taiwan. Paper presented at the Proc. Geol. Soc. China 27, P. 86-100.
Karig, D. E., Ingle, J. C., Bouma, A. H., Ellis, C. H., Haile, N. & Koizumi, I. (1975) Initial reports of the deep sea drilling project. in I. Washington, D.C.: U.S. Government Printing Office, 972.
Kelley, S. (2002). Excess argon in K–Ar and Ar–Ar geochronology. Chemical geology, 188(1), 1-22.
Keyser, W., Tsai, C.-H., Iizuka, Y., Oberhänsli, R., & Ernst, W. G. (2016). High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics, 692, 191-202.
Koppers, A. A. P. (2002). ArArCALC—software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5), 605-619.
Kouketsu, Y., Tsai, C.-H., & Enami, M. (2019). Discovery of unusual metamorphic temperatures in the Yuli belt, eastern Taiwan: New interpretation of data by Raman carbonaceous material geothermometry. Geology, 47(6), 522-526.
Lai, L. S.-H., Dorsey, R. J., Horng, C.-S., Chi, W.-R., Shea, K.-S., & Yen, J.-Y. (2021). Polygenetic mélange in the retrowedge foredeep of an active arc-continent collision, Coastal Range of eastern Taiwan. Sedimentary Geology, 418, 105901.
Lai, Y.-M., Chu, M.-F., Chen, W.-S., Shao, W.-Y., Lee, H.-Y., & Chung, S.-L. (2018). Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc. Terrestrial, Atmospheric & Oceanic Sciences, 29(2).149-186
Lai, Y.-M., Song, S.-R., Lo, C.-H., Lin, T.-H., Chu, M.-F., & Chung, S.-L. (2017). Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 272-273, 92-115.
Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9).
Lallemand, S., Heuret, A., Faccenna, C., & Funiciello, F. (2008). Subduction dynamics as revealed by trench migration. Tectonics, 27(3).
Lallemand, S., Peyret, M., van Rijsingen, E., Arcay, D., & Heuret, A. (2018). Roughness Characteristics of Oceanic Seafloor Prior to Subduction in Relation to the Seismogenic Potential of Subduction Zones. Geochemistry, Geophysics, Geosystems, 19(7), 2121-2146.
Lan, C.-Y., & Liou, J. (1984). Mineral chemistry of metamorphosed oceanic rocks in the Yuli belt of the Tananao Schist, Taiwan. Memoir of the Geological Society of China, 6, 153-178.
Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee, J. B., & Kim, J. S. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17), 4507-4512.
Lee, Y.-H., Byrne, T., Wang, W.-H., Lo, W., Rau, R.-J., & Lu, H.-Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454.
Lee, Y.-H., Chen, C.-C., Liu, T.-K., Ho, H.-C., Lu, H.-Y., & Lo, W. (2006). Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt — From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters, 252(3), 413-422.
Lee†, J. K. W., Williams, I. S., & Ellis, D. J. (1997). Pb, U and Th diffusion in natural zircon. Nature, 390(6656), 159-162.
Leitch, E. C. (1984). Marginal basins of the SW Pacific and the preservation and recognition of their ancient analogues: a review. Geological Society, London, Special Publications, 16(1), 97-108.
Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., . . . Zhang, G.-L. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12), 4958-4983.
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., & Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1), 28-42.
Lin, C.-T., Harris, R., Sun, W.-D., & Zhang, G.-L. (2019). Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite. Geochemistry, Geophysics, Geosystems, 20(4), 2110-2133.
Lin, M.-L. (1999). Litho-Stratigraphy And Structural Geology Of The Wanjung Area, Eastern Taiwan And Their Tectonic Implications. Journal of the Geological Society of China, 42(2), 249-267.
Lin, M.-L., Yang, C.-N., & Wang, Y. (1984). Petrotectonic study on the Yuli belt of the Tananao Schist in the Chinshuichi area, eastern Taiwan. Acta Geologica Taiwanica(22), 151-188.
Liou, J.G. (1981). Petrology of metamorphosed oceanic rocks in the Central Range of Taiwan. Mem. Geol. Soc. China, 4, 291-342.
Liou, J. G., & Ernst, W. G. (1979). Oceanic ridge metamorphism of the East Taiwan Ophiolite. Contributions to Mineralogy and Petrology, 68(3), 335-348.
Liou, J. G., Ho, C. O., & Yen, T. P. (1975). Petrology of some Glaucophane Schists and Related Rocks from Taiwan. Journal of Petrology, 16(1), 80-109.
Liou, J. G., Lan, C.Y., Suppe, J., & Ernst, W. G. (1977). The East Taiwan ophiolite : its occurrence, petrology, metamorphism, and tectonic setting Mining Research and Service Organization special report: Mining Research and Service Organization, Industrial Technology Research Institute.
Lo, C.-H., Onstott, T. C., Chen, C.-H., & Lee, T. (1994). An assessment of 40Ar/39Ar dating for the whole-rock volcanic samples from the Luzon Arc near Taiwan. Chemical geology, 114(1), 157-178.
Lo, C. -H., & Yui, T. F. (1996). 40Ar/39Ar dating of high-pressure rocks in the tananao basement complex, Taiwan. Journal of the Geological Society of China, 39(1), 13-30.
Lo, Y.-C., Chen, C.-T., Lo, C.-H., & Chung, S.-L. (2020). Ages of ophiolitic rocks along plate suture in Taiwan orogen: Fate of the South China Sea from subduction to collision. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31, 383–402.
Lo, Y.-C., Chen, C.-T., Lo, C.-H., Chung, S.-L., & Yeh, M.-W. (2023). Record of short-lived “orogen” on Eurasian continental margin by South China Sea obduction preserved in Taiwan collision. Frontiers in Earth Science, 11.
Lu, C.-Y., & Hsu, K. J. (1992). Tectonic evolution of the Taiwan mountain belt. Petroleum Geology of Taiwan, 27, 21-46.
Ludwig, K. (2008). Isoplot version 4.15: a geochronological toolkit for microsoft Excel. Berkeley Geochronology Center, Special Publication, 4, 247-270.
Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., . . . Liu, C.-S. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution Geology and geophysics of an arc-continent collision, Taiwan (Vol. 358, pp. 0): Geological Society of America.
Malavieille, J., Molli, G., Genti, M., Dominguez, S., Beyssac, O., Taboada, A., . . . Chen, C.-T. (2016). Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies. Journal of Geodynamics, 100, 87-103.
Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3), 377-394.
Marsaglia, K.M. (1995) Chapter 8, Interarc and backarc basins, in Busby, C. and Ingersoll R.V., eds., “Tectonics of Sedimentary Basins”, Blackwell, p. 299-329.
McDonough, W. F., Šrámek, O., & Wipperfurth, S. A. (2020). Radiogenic Power and Geoneutrino Luminosity of the Earth and Other Terrestrial Bodies Through Time. Geochemistry, Geophysics, Geosystems, 21(7), e2019GC008865.
McDougall, I., & Harrison, T. M. (2000). Geochronology and Thermochronology by the 40Ar/39Ar Method (2nd edition),Oxford University Press, Oxford, 1999. 269 pp. ISBN 0195109201. . Journal of Petrology, 41(12), 1823-1824.
McIntosh, K., Nakamura, Y., Wang, T. K., Shih, R. C., Chen, A., & Liu, C. S. (2005). Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401(1), 23-54.
Meng, X., Shao, L., Cui, Y., Zhu, W., Qiao, P., Sun, Z., & Hou, Y. (2021). Sedimentary records from Hengchun accretionary prism turbidites on Taiwan Island: Implication on late Neogene migration rate of the luzon subduction system. Marine and Petroleum Geology, 124, 104820.
Merrihue, C., & Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research (1896-1977), 71(11), 2852-2857.
Mesalles, L., Lee, Y.-H., Ma, T.-C., Tsai, W.-L., Tan, X.-B., & Lee, H.-Y. (2020). A Late-Miocene Yuli belt? New constraints on the eastern Central Range depositional ages. Terrestrial, Atmospheric & Oceanic Sciences, 31, 403-414.
Min, K., Mundil, R., Renne, P. R. & Ludwig K. R. (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 64, 73–98
Muller, C., Pelletier, B., Schaaf, A., Glacon, G., & Huang, T. (1984). Age determination of the ophiolitic materials from the Hengchun Peninsula (South Taiwan) and their tectonic implication. Memoir of the Geological society of china, NO.6. 327-334
Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A., . . . Wigger, P. (2006). The Andes: active subduction orogeny. Frontiers in earth sciences, 1863-4621, Springer, Berlin.
Ota, T., & Kaneko, Y. (2010). Blueschists, eclogites, and subduction zone tectonics: Insights from a review of Late Miocene blueschists and eclogites, and related young high-pressure metamorphic rocks. Gondwana Research, 18(1), 167-188.
Page, B. M., & John, S. (1981). The Pliocene Lichi melange of Taiwan; its plate-tectonic and olistostromal origin. American Journal of Science, 281(3), 193.
Page, B. M., & Lan, C.-Y. (1983). The Kenting Mélange and its record of tectonic events. Memoir of the Geological Society of China, 5, 227-248.
Pan, G., Wang, L., Li, R., Yuan, S., Ji, W., Yin, F., Zhang, W., & Wang, B. (2012). Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53, 3-14.
Park, A.F. (1990). Ophiolite . In: Petrology. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30845-8_167
Pearce, J. A., Lippard, S. J., & Roberts, S. (1984). Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1), 77-94.
Pelletier, B., Cotton, J., Bellon, H., Bassoulet, C., Stephan, J.F. (1986) Field setting, petrography, chemistry, K-Ar ages and origin of the magmatic and sedimentary associated rocks of the Hengchun Peninsula, southern Taiwan. Bull. Cent. Geol. Surv. 4,27–54.
Pelletier, B., & Stephan, J. F. (1986). Middle miocene deduction and late miocene beginning of collision registered in the hengchun peninsula: Geodynamic implications for the evolution of Taiwan. Tectonophysics, 125(1), 133-160.
Qian, S., Zhang, X., Wu, J., Lallemand, S., Nichols, A. R. L., Huang, C., . . . Zhou, H. (2021). First identification of a Cathaysian continental fragment beneath the Gagua Ridge, Philippine Sea, and its tectonic implications. Geology, 49(11), 1332-1336.
Queano, K. L., Ali, J. R., Milsom, J., Aitchison, J. C., & Pubellier, M. (2007). North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations. Journal of Geophysical Research: Solid Earth, 112(B5).
Renne, P. R., Mundil, R., Balco, G., Min, K., & Ludwig, K. R. (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta, 74, 5349-5367.
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., & DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical geology, 145(1), 117-152.
Rubatto, D. (2002) Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.
Ruffet, G., Gruau, G., Ballèvre, M., Féraud, G., & Philippot, P. (1997) Rb-Sr and 40Ar/39Ar laser probe dating of high-pressure phengites from the Sesia zone (Western Alps): Underscoring of excess argon and new age constraints on the high-pressure metamorphism. Chemical Geology, 141, 1-18.
Russo, R. M., & Silver, P. G. (1996). Cordillera formation, mantle dynamics, and the Wilson cycle. Geology, 24(6), 511-514.
Ryan, P. D., & Dewey, J. F. (2019). The Ordovician Grampian Orogeny, Western Ireland: Obduction Versus “Bulldozing” During Arc-Continent Collision. Tectonics, 38(9), 3462-3475.
Sandmann, S., Nagel, T. J., Froitzheim, N., Ustaszewski, K., & Münker, C. (2015). Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova, 27(4), 285-291.
Schaen, A. J., Jicha, B. R., Hodges, K. V., Vermeesch, P., Stelten, M. E., Mercer, C. M., . . . Singer, B. S. (2020). Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bulletin, 133(3-4), 461-487.
Schellart, W. P., Lister, G. S., & Toy, V. G. (2006). A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews, 76(3), 191-233.
Schoene, B. (2014). 4.10-U–Th–Pb Geochronology. Treatise on geochemistry, 4, 341-378.
Scholl, D. W., & von Huene, R. E. (2009). Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geological Society Special Publication(318), 105-125.
Searle, M., Rioux, M., & Garber, J. M. (2022). One line on the map: A review of the geological history of the Semail Thrust, Oman-UAE mountains. Journal of Structural Geology, 158, 104594.
Şengör, A. M. C., Natal'in, B. A., & Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435), 299-307.
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., . . . Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3), 212-270.
Shao, W.-Y., Chung, S.-L., Chen, W.-S., Lee, H.-Y., & Xie, L.-W. (2015). Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479-482.
Shellnutt, J. G., & Hsieh, R. B. (2016). Mantle potential temperature estimates of basalt from the East Taiwan Ophiolite. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 8.
Shyu, J. B. H., Sieh, K., & Chen, Y.-G. (2005). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1), 167-177.
Sibuet, J.-C., Hsu, S.-K., Le Pichon, X., Le Formal, J.-P., Reed, D., Moore, G., & Liu, C.-S. (2002). East Asia plate tectonics since 15 Ma: constraints from the Taiwan region. Tectonophysics, 344(1), 103-134.
Silver, P. G., M. Russo, R., & Lithgow-Bertelloni, C. (1998). Coupling of South American and African Plate Motion and Plate Deformation. Science, 279(5347), 60-63.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., . . . Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical geology, 249(1), 1-35.
Smith, G.A., & Landis, C. (1995) Intra-arc basins, in Busby, C.J. & Ingersoll, R.V., eds., “Tectonics of sedimentary basins”, Oxford: Blackwell Science Publishing, p. 263–298. ISBM: 0865422451.
Song, S. R. & Lo, H. J. (2002) Lithofacies of volcanic rocks in the central Coastal Range, eastern Taiwan: Implications for island arc evolution. J. Asian Earth Sci. 21, 23–38.
Spell, T. L., & McDougall, I. (2003). Characterization and calibration of 40Ar/39Ar dating standards. Chemical geology, 198(3), 189-211.
Steiger, R. H., & Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359-362.
Stoenner, R. W., Schaeffer, O. A., & Katcoff, S. (1965). Half-Lives of Argon-37, Argon-39, and Argon-42. Science, 148(3675), 1325-1328.
Sun, C.-H., Smith, A. D., & Chen, C.-H. (1998). Nd-Sr Isotopic and Geochemical Evidence on the Protoliths of Exotic Blocks in the Juisui Area, Yuli Belt, Taiwan. International Geology Review, 40(12), 1076-1087.
Suppe, J. (1988). Tectonics of arc-continent collision on both sides of the South China Sea: Taiwan and Mindoro. Acta Geologica Taiwanica(26), 1-18.
Suppe, J., Lan, C. Y., Hendel, E., & Liou, J. (1977). Paleogeographic interpretation of red shales within the East Taiwan Ophiolite. Petroleum Geology Taiwan, 14, 109-120.
Suppe, J., Liou, J. G., & Ernst, W. G. (1981). Paleogeographic origins of the Miocene East Taiwan Ophiolite. American Journal of Science, 281(3), 228-246.
Tan, H., Gao, X., Wang, K., Gao, J., & He, J. (2022). Hidden Roughness of Subducting Seafloor and Implications for Megathrust Seismogenesis: Example From Northern Manila Trench. Geophysical Research Letters, 49(17), e2022GL100146.
Tao, Z., Yin, J., Sun, M., Wang, T., Yuan, C., Chen, W., . . . Chen, Y. (2022). Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: A magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 232, 105-112.
Taylor, B., & Karner, G. D. (1983). On the evolution of marginal basins. Reviews of Geophysics, 21(8), 1727-1741.
Teng, L. S.(1979). Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan.(I. Northern part). Acta Geologica Taiwanica,20, 129-156.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76.
Tian, Z.-X., Yan, Y., Huang, C.-Y., Zhang, X.-C., Liu, H.-Q., Yu, M.-M., . . . Dilek, Y. (2019). Geochemistry and Geochronology of the Accreted Mafic Rocks From the Hengchun Peninsula, Southern Taiwan: Origin and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 124(3), 2469-2491.
Tsai, C.-H., Iizuka, Y., & Ernst, W. G. (2013). Diverse mineral compositions, textures, and metamorphic P–T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asian Earth Sciences, 63, 218-233.
Tsai, C.-H., Shyu, J. B. H., Chung, S.-L., & Lee, H.-Y. (2020). Miocene sedimentary provenance and paleogeography of the Hengchun Peninsula, southern Taiwan: Implications for tectonic development of the Taiwan orogen. Journal of Asian Earth Sciences, 194, 104032.
Tsujimori, T., & Harlow, G. E. (2012). Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. European Journal of Mineralogy, 24(2), 371-390.
Vavra, G., Gebauer, D., Schmidt, R. & Compston, W. (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): An ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol. 122, 337–358.
Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479-1493.
Wakabayashi, J. (2015). Anatomy of a subduction complex: architecture of the Franciscan Complex, California, at multiple length and time scales. International Geology Review, 57(5-8), 669-746.
Wang, CS.. (1976). The Lichi Formation of the Coastal Range and arc-continent collision in eastern Taiwan. Bull. Geol. Surv. Taiwan. 25 73–86.
Wang, K.-L., Lo, Y.-M., Chung, S.-L., Lo, C.-H., Hsu, S.-K., Yang, H.-J., & Shinjo, R. (2012). Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric & Oceanic Sciences, 23(6), 657-669.
Wetherill, G. W. (1956). Discordant uranium‐lead ages, I. Eos, Transactions American Geophysical Union, 37(3), 320-326.
Williams, I. S., & Claesson, S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II Ion microprobe zircon U–Th–Pb. Contrib. Mineral. Petrol. 97, 205–217.
Wu, J., & Suppe, J. (2018). Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 29(6), 1304-1318.
Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121(6), 4670-4741.
Xu, Z.-Q., Dilek, Y., Yang, J.-S., Liang, F.-H., Liu, F., Ba, D.-Z., . . . Ji, S.-C. (2015). Crustal structure of the Indus–Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Research, 27(2), 507-524.
Yang, C.-N., & Wang, Y. (1985). Petrotectonic study on the Yuli belt of the Tananao Schist in the Juisui area, eastern Taiwan. Acta Geologica Taiwanica(23), 153-180.
Yang, T.-Y., Liu, T.-K., & Chen, C.-H. (1988). Thermal Event Records of the Chimei Gineous Complex: Constraint on the Ages of Magma Activities and the Structural Implication Based on Fission Track Dating. Acta Geologica Taiwanica, 26, 237-246.
Yang, T. F., Tien, J.-l., Chen, C.-H., Lee, T., & Punongbayan, R. S. (1995). Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination. Journal of Southeast Asian Earth Sciences, 11(2), 81-93.
Yen, T.-P. (1966). Glaucophane schist of Taiwan. Proceedings of the Geological Society of China(9), 70-73.
Yen, T. (1963). The metamorphic belts within the Tananao Schist terrain of Taiwan. Proceedings of the Geological Society of China, 6, 72-74.
Yu, M., Yan, Y., Huang, C.-Y., Zhang, X., Tian, Z., Chen, W.-H., & Santosh, M. (2018). Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6), 2600-2609.
Yu, M., Yumul, G. P., Dilek, Y., Yan, Y., & Huang, C.-Y. (2022). Diking of various slab melts beneath forearc spreading center and age constraints of the subducted slab. Earth and Planetary Science Letters, 579, 117367.
Yui, T.-F., & Lo, C.-H. (1989). High-pressure metamorphosed ophiolitic rocks from the Wanjung area, Taiwan. Proceedings of the Geological Society of China, 32, 47-62.
YUI, T.-F., LU, C.-Y., & LO, C.-H. (1988). A speculative tectonic history of the Tananao Schist of Taiwan. Proceedings of the Geological Society of China, 31, 7-17.
Yui, T.-F., Usuki, T., Chen, C.-Y., Ishida, A., Sano, Y., Suga, K., . . . Chen, C.-T. (2014). Dating thin zircon rims by NanoSIMS: the Fengtien nephrite (Taiwan) is the youngest jade on Earth. International Geology Review, 56(16), 1932-1944.
Yui, T. F., Maki, K., Lan, C. Y., Hirata, T., Chu, H. T., Kon, Y., . . . Ernst, W. G. (2012). Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics. Tectonophysics, 541-543, 31-42.
Yui, T. F., Okamoto, K., Usuki, T., Lan, C. Y., Chu, H. T., & Liou, J. G. (2009). Late Triassic–Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China – evidence from zircon SHRIMP dating. International Geology Review, 51(4), 304-328.
Zhang, X., Cawood, P. A., Huang, C.-Y., Wang, Y., Yan, Y., Santosh, M., . . . Yu, M. (2016). From convergent plate margin to arc–continent collision: Formation of the Kenting Mélange, Southern Taiwan. Gondwana Research, 38, 171-182.
Zhang, X., Yan, Y., Huang, C.-Y., Chen, D., Shan, Y., Lan, Q., . . . Yu, M. (2014). Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85, 26-39.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89040-
dc.description.abstract蛇綠岩是在板塊聚合帶構造活動中被擠壓到大陸邊緣出露的海洋地殼與上部地函的碎塊,是板塊縫合帶在陸地上的標誌,海洋地殼能夠進入造山帶的主要方式是通過發生在聚合性板塊邊界的隱沒與地殼增生造山作用。本研究針對台灣造山帶中的蛇綠岩系礦物樣本進行同位素定年分析,利用鋯石的鈾鉛定年以及變質礦物的鉀氬衰變系統進行氬氬年代測定,鋯石的鈾鉛年代可以提供較為明確的證據來釐清蛇紋岩的來源,變質礦物的氬氬年代則可作為進一步變質時間的約束。以現代主流的板塊運動重建以及前進型增生造山作用的設定,解釋台灣造山帶中蛇綠岩塊在台灣約6.5百萬年前的弧陸碰撞造山作用發生前的生成與變質紀錄,了解板塊聚合帶從海洋岩石圈隱沒到被動大陸邊緣隱沒之間的轉換。
通過玉里帶的高壓基性地塊、利吉混同岩體中的東台灣蛇綠岩塊以及恆春半島的基性礫石的採樣分析,同位素定年結果顯示其中的蛇綠岩塊均來自23-15百萬年前生成的南中國海岩石圈。玉里帶的基性地塊在9百萬年之前發生了變質作用,並從隱沒通道折返到增積岩體底部;東台灣蛇綠岩塊則在進入增積岩體後並未深埋就被從增積後楔向東傾瀉到菲律賓板塊的弧前盆地。恆春半島的基性礫石則在約13百萬年前發生動態變質後沉積,基性沉積物來自大陸邊緣上的一個由海洋地殼孤立隆起形成的高地,很可能是由於歐亞大陸邊緣對馬尼拉海溝斜向隱沒造成的應力加上應變重組引起的板塊邊緣構造重組。綜合而言,台灣造山帶中的蛇綠岩紀錄著南中國海板塊開始向菲律賓板塊隱沒後的13-9百萬年間發生的一系列構造事件,有時間與空間上的關聯,揭示了洋-陸板塊隱沒與弧陸碰撞過程中所隱藏的構造演化過程。
zh_TW
dc.description.abstractOphiolite serves as a signature of suture zone, derived from oceanic lithosphere. The main mechanism which induces oceanic crust entering the orogenic belt is through subduction and crustal accretion at convergent plate boundaries. This study conducts a study of isotopic geochronology on the ophiolites cropping out around the Taiwan mountain belt. The obtained zircon U-Pb ages provide evidences helping to clarify the origin of ophiolites, while the 40Ar/39Ar ages of metamorphic minerals further constrain the timing of metamorphic events associated with subduction and accretion processes before the arc-continent collision at ~ 6.5 Ma, and therefore provide information to better understand the transition of convergence boundary from subduction of oceanic lithosphere to passive continental margin subduction around the Taiwan Mountain belt.
Geochronological data from the high-pressure mafic blocks in the Yuli belt, the East Taiwan Ophiolite (ETO) blocks in the Lichi mélange, and the mafic conglomerates in the Hengchun Peninsula show that these mafic blocks were all originated from the South China Sea plate formed at 23-15 million years ago. The mafic blocks in the Yuli belt experienced metamorphism before 9 Ma and exhumated from the subduction channel to the bottom of the accretionary complex. The ETO blocks were not deeply buried after entering the accretionary complex, instead transported eastward with retrowedge to the forearc basin of the Philippine Sea Plate. New geochronological constraints further indicate that a piece of Early Miocene South China Sea crust was dynamically metamorphosed at ~13 Ma, forming an isolated high-relief subaerial mountain range along the Chinese continental margin, and then cropped out as mafic conglomerates in the Hengchun Peninsula. Therefore, these ophiolitic blocks in the Taiwan orogenic belt record a series of tectonic events occurring between 13 and 9 million years ago. These events exhibit temporal and spatial correlations, revealing the hidden structural complexity during the transition from oceanic subduction to arc-continental collision.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:52:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:52:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 xii
第一章. 緒論 1
1.1. 蛇綠岩的地質意義 1
1.2. 板塊聚合帶的隱沒增生造山作用 3
1.3. 台灣的大地構造與和蛇綠岩分布意涵 11
1.4. 研究目的 18
第二章 同位素定年原理與分析方法 23
2.1. 同位素定年原理與地質年代學應用 23
2.2. 鋯石鈾鉛定年方法 28
2.3. 鋯石鈾鉛定年樣本前處理與實驗流程 33
2.3.1. 鋯石樣本靶製作: 33
2.3.2. 鋯石樣本靶的二次電子顯微與陰極發光影像(SEM-CL) 34
2.3.3. 實驗儀器分析與數據處理 35
2.3.4. 實驗後的數據處理 36
2.4. Ar-Ar定年方法與應用 37
2.5. 40Ar/39Ar定年樣本前處理與實驗流程: 43
第三章 台灣東部板塊縫合帶的蛇綠岩 46
3.1. 玉里帶的地質與高壓變質作用 48
3.2. 海岸山脈火成年代與利吉混同層 55
3.3. 樣本與年代 61
3.4. 年代結果討論 75
3.4.1. 玉里帶瑞穗地區構造地塊變質岩中白雲母40Ar/39Ar年代意義 75
3.4.2. 花東縱谷基性變質岩與蛇綠岩的鋯石鈾鉛年代與來源 76
3.4.3. 玉里帶構造地塊的變質溫度歷史 78
3.4.4. 台灣東部縫合帶的蛇綠岩構造演化 81
第四章 恆春半島的蛇綠岩 85
4.1. 前人對石門鎂鐵質礫岩的研究 88
4.2. 石門礫岩的樣本與定年結果 90
4.3. 樣本年代結果討論 96
4.3.1 恆春半島的蛇綠岩沉積物來源 96
4.3.2 角閃岩化的變質作用年代意義 97
4.3.3 恆春半島石門礫岩的構造意義 100
第五章 結論 104
參考文獻 105
中文部分 105
英文部分 107
附錄 148
Table A: Analytical results of 40Ar/39Ar Step-heating experiaments 149
Table L1: Zircon U-Pb dating results for sample JW01 (ETO Chert) 153
Table L2: Zircon U-Pb dating results for sample JW02 (ETO Gabbro) 155
Table L3: Zircon U-Pb dating results for sample WL-02 (meta-gabbro, Yuli belt) 157
Table L4: Zircon U-Pb dating results for sample DMY-01 (detrital zircon, Juisui) 159
Table S1: Zircon U-Pb dating results for sample 1202A (foliated amphibolite pebbles) 164
Table S2: Zircon U-Pb dating results for sample 1202B (plutonic gabbro pebbles) 167
Table S3: Zircon U-Pb dating results for sample 1202C (concordant sandstone) 169
Table S4: Amphibole 40Ar/39Ar dating results of laser single grain fusion experiments for sample 1202A (foliated amphibolite pebbles) 175
-
dc.language.isozh_TW-
dc.title台灣蛇綠岩同位素定年及其大地構造意義zh_TW
dc.titleIsotope geochronology of ophiolitic rocks in Taiwan and its tectonic implicationsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鍾孫霖;陳致同;李元希;李通藝;葉孟宛;朱傚祖zh_TW
dc.contributor.oralexamcommitteeSun-Lin Chung;Chih-Tung Chen;Yuan-Hsi Lee;Tung-Yi Lee;Meng-Wan Yeh;Hao-Tsu Chuen
dc.subject.keyword板塊縫合帶,蛇綠岩,同位素定年學,變質年代,zh_TW
dc.subject.keywordSuture zone,Ophiolite accretion,Isotopic geochronology,Metamorphic age,en
dc.relation.page176-
dc.identifier.doi10.6342/NTU202303198-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
8.17 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved