Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰zh_TW
dc.contributor.advisorSheng-Feng Shenen
dc.contributor.author王鵬zh_TW
dc.contributor.authorPeng Wangen
dc.date.accessioned2023-08-16T16:49:37Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAlexander, D. H., & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12(1), 1–6. https://doi.org/10.1186/1471-2105-12-246/FIGURES/3
Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38–44. https://doi.org/10.1016/J.TREE.2007.09.008
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155. https://doi.org/10.1016/J.TREE.2006.11.004
Bitter, M. C., Kapsenberg, L., Gattuso, J. P., & Pfister, C. A. (2019). Standing genetic variation fuels rapid adaptation to ocean acidification. Nature Communications 2019 10:1, 10(1), 1–10. https://doi.org/10.1038/s41467-019-13767-1
Bo-Fei, C. (2019). Social evolution and genomic investigation of breeding adaptation in burying beetles [Unpublished doctoral dissertation]. National Taiwan Normal University.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114. https://doi.org/10.1093/BIOINFORMATICS/BTU170
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183–192. https://doi.org/10.1016/J.TREE.2011.01.009
Bridle, J. R., & Vines, T. H. (2007). Limits to evolution at range margins: when and why does adaptation fail? Trends in Ecology & Evolution, 22(3), 140–147. https://doi.org/10.1016/J.TREE.2006.11.002
Brown, J. S., & Eckert, C. G. (2005). Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). American Journal of Botany, 92(3), 495–502. https://doi.org/10.3732/AJB.92.3.495
Buchinger, T. J., Hondorp, D. W., & Krueger, C. C. (2022). Local diversity in phenological responses of migratory lake sturgeon to warm winters. Oikos, 2022(6), e08977. https://doi.org/10.1111/OIK.08977
Chaturvedi, A., Zhou, J., Raeymaekers, J. A. M., Czypionka, T., Orsini, L., Jackson, C. E., Spanier, K. I., Shaw, J. R., Colbourne, J. K., & De Meester, L. (2021). Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nature Communications, 12(1), 4306. https://doi.org/10.1038/s41467-021-24581-z
Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., Cox, A. J., Kruglyak, S., & Saunders, C. T. (2016). Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 32(8), 1220–1222. https://doi.org/10.1093/BIOINFORMATICS/BTV710
Comes, H. P., Tribsch, A., & Bittkau, C. (2008). Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3083–3096. https://doi.org/10.1098/RSTB.2008.0063
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), 1–4. https://doi.org/10.1093/GIGASCIENCE/GIAB008
de Kort, C. A. D. (1990). Thirty-five years of diapause research with the Colorado potato beetle. Entomologia Experimentalis et Applicata, 56(1), 1–13. https://doi.org/10.1111/J.1570-7458.1990.TB01376.X
Eckert, A. J., Maloney, P. E., Vogler, D. R., Jensen, C. E., Mix, A. D., & Neale, D. B. (2015). Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genetics and Genomes, 11(3), 1–17. https://doi.org/10.1007/S11295-015-0863-0/FIGURES/3
Engelhard, G. H., Ellis, J. R., Payne, M. R., Ter Hofstede, R., & Pinnegar, J. K. (2011). Ecotypes as a concept for exploring responses to climate change in fish assemblages. ICES Journal of Marine Science, 68(3), 580–591. https://doi.org/10.1093/ICESJMS/FSQ183
Fuhrmann, N., Prakash, C., & Kaiser, T. S. (2023). Polygenic adaptation from standing genetic variation allows rapid ecotype formation. ELife, 12. https://doi.org/10.7554/ELIFE.82824
Gomulkiewicz, R., Holt, R. D., & Barfield, M. (1999). The Effects of Density Dependence and Immigration on Local Adaptation and Niche Evolution in a Black-Hole Sink Environment. Theoretical Population Biology, 55(3), 283–296. https://doi.org/10.1006/TPBI.1998.1405
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14812–14817. https://doi.org/10.1073/PNAS.0406166101/SUPPL_FILE/06166SUPPAPPENDIX2.PDF
Hermisson, J., & Pennings, P. S. (2005). Soft SweepsMolecular Population Genetics of Adaptation From Standing Genetic Variation. Genetics, 169(4), 2335–2352. https://doi.org/10.1534/GENETICS.104.036947
Holt, R. D., & Gomulkiewich, R. (1997). How Does Immigration Influence Local Adaptation? A Reexamination of a Familiar Paradigm. Https://Doi.Org/10.1086/286005, 149(3), 563–572. https://doi.org/10.1086/286005
Hwang, W., & Shiao, S. F. (2011). Dormancy and the influence of photoperiod and temperature on sexual maturity in Nicrophorus nepalensis (Coleoptera: Silphidae). Insect Science, 18(2), 225–233. https://doi.org/10.1111/J.1744-7917.2010.01356.X
Jensen, J. L., Bohonak, A. J., & Kelley, S. T. (2005). Isolation by distance, web service. BMC Genetics, 6, 13. https://doi.org/10.1186/1471-2156-6-13
Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., Swofford, R., Pirun, M., Zody, M. C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson, M. C., Myers, R. M., Miller, C. T., Summers, B. R., Knecht, A. K., … Team, B. I. G. S. P. & W. G. A. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484(7392), 55–61. https://doi.org/10.1038/nature10944
Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends in Plant Science, 14(1), 51–58. https://doi.org/10.1016/J.TPLANTS.2008.10.002
Kawecki, T. J. (2000). Adaptation to marginal habitats: contrasting influence of the dispersal rate on the fate of alleles with small and large effects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1450), 1315–1320. https://doi.org/10.1098/RSPB.2000.1144
Keller, S. R., & Taylor, D. R. (2008). History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecology Letters, 11(8), 852–866. https://doi.org/10.1111/J.1461-0248.2008.01188.X
Lai, Y. T., Yeung, C. K. L., Omland, K. E., Pang, E. L., Hao, Y., Liao, B. Y., Cao, H. F., Zhang, B. W., Yeh, C. F., Hung, C. M., Hung, H. Y., Yang, M. Y., Liang, W., Hsu, Y. C., Yao, C. Te, Dong, L., Lin, K., & Li, S. H. (2019). Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 2152–2157. https://doi.org/10.1073/PNAS.1813597116/SUPPL_FILE/PNAS.1813597116.SAPP.PDF
Lande, R., & Shannon, S. (1996). THE ROLE OF GENETIC VARIATION IN ADAPTATION AND POPULATION PERSISTENCE IN A CHANGING ENVIRONMENT. Evolution, 50(1), 434–437. https://doi.org/10.1111/j.1558-5646.1996.tb04504.x
Layer, R. M., Chiang, C., Quinlan, A. R., & Hall, I. M. (2014). LUMPY: A probabilistic framework for structural variant discovery. Genome Biology, 15(6), 1–19. https://doi.org/10.1186/GB-2014-15-6-R84/FIGURES/8
Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution, 17(4), 183–189. https://doi.org/10.1016/S0169-5347(02)02497-7
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324
Lloyd, J. E. (1969). Flashes of Photuris Fireflies: Their Value and Use in Recognizing Species. The Florida Entomologist, 52(1), 29. https://doi.org/10.2307/3493705
Marques, D. A., Meier, J. I., & Seehausen, O. (2019). A Combinatorial View on Speciation and Adaptive Radiation. Trends in Ecology & Evolution, 34(6), 531–544. https://doi.org/10.1016/J.TREE.2019.02.008
Martin, M., Patterson, M., Garg, S., Fischer, S. O., Pisanti, N., Klau, G. W., Schöenhuth, A., & Marschall, T. (2016). WhatsHap: fast and accurate read-based phasing. BioRxiv, 085050. https://doi.org/10.1101/085050
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/GR.107524.110
Nater, A., Mattle-Greminger, M. P., Nurcahyo, A., Nowak, M. G., de Manuel, M., Desai, T., Groves, C., Pybus, M., Sonay, T. B., Roos, C., Lameira, A. R., Wich, S. A., Askew, J., Davila-Ross, M., Fredriksson, G., de Valles, G., Casals, F., Prado-Martinez, J., Goossens, B., … Krützen, M. (2017). Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species. Current Biology, 27(22), 3487-3498.e10. https://doi.org/10.1016/J.CUB.2017.09.047
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/MOLBEV/MSU300
Paaby, A. B., & Rockman, M. V. (2014). Cryptic genetic variation: Evolution’s hidden substrate. In Nature Reviews Genetics (Vol. 15, Issue 4, pp. 247–258). Nature Publishing Group. https://doi.org/10.1038/nrg3688
Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M., & Lowe, A. J. (2008). Adaptive evolution in invasive species. Trends in Plant Science, 13(6), 288–294. https://doi.org/10.1016/J.TPLANTS.2008.03.004
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. https://doi.org/10.1093/BIOINFORMATICS/BTQ033
Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V., & Korbel, J. O. (2012). DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28(18), i333–i339. https://doi.org/10.1093/BIOINFORMATICS/BTS378
Richardson, J. L., Urban, M. C., Bolnick, D. I., & Skelly, D. K. (2014). Microgeographic adaptation and the spatial scale of evolution. Trends in Ecology & Evolution, 29(3), 165–176. https://doi.org/10.1016/J.TREE.2014.01.002
Russo, D., & Jones, G. (2000). The two cryptic species of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) occur in Italy: Evidence from echolocation and social calls. Mammalia, 64(2), 187–197. https://doi.org/10.1515/MAMM.2000.64.2.187/MACHINEREADABLECITATION/RIS
Salminen, T. S., & Hoikkala, A. (2013). Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. Journal of Insect Physiology, 59(4), 450–457. https://doi.org/10.1016/J.JINSPHYS.2013.02.005
Sanford, E., Holzman, S. B., Haney, R. A., Rand, D. M., & Bertness, M. D. (2006). LARVAL TOLERANCE, GENE FLOW, AND THE NORTHERN GEOGRAPHIC RANGE LIMIT OF FIDDLER CRABS. Ecology, 87(11), 2882–2894. https://doi.org/10.1890/0012-9658
Schönrogge, K., Barr, B., Wardlaw, J. C., Napper, E., Gardner, M. G., Breen, J., Elmes, G. W., & Thomas, J. A. (2002). When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biological Journal of the Linnean Society, 75(3), 291–300. https://doi.org/10.1046/J.1095-8312.2002.00019.X
Smadja, C. M., & Butlin, R. K. (2011). A framework for comparing processes of speciation in the presence of gene flow. Molecular Ecology, 20(24), 5123–5140. https://doi.org/10.1111/J.1365-294X.2011.05350.X
Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K. H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., & Dimitrov, D. (2018). Finding Evolutionary Processes Hidden in Cryptic Species. Trends in Ecology & Evolution, 33(3), 153–163. https://doi.org/10.1016/J.TREE.2017.11.007
Tsai, H. Y., Rubenstein, D. R., Fan, Y. M., Yuan, T. N., Chen, B. F., Tang, Y., Chen, I. C., & Shen, S. F. (2020). Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nature Communications 2020 11:1, 11(1), 1–12. https://doi.org/10.1038/s41467-020-15208-w
Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115. https://doi.org/10.1093/NAR/GKS596
Van Strien, M. J., Holderegger, R., & Van Heck, H. J. (2014). Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 2015 114:1, 114(1), 27–37. https://doi.org/10.1038/hdy.2014.62
Vershinina, A. O., Heintzman, P. D., Froese, D. G., Zazula, G., Cassatt-Johnstone, M., Dalén, L., Der Sarkissian, C., Dunn, S. G., Ermini, L., Gamba, C., Groves, P., Kapp, J. D., Mann, D. H., Seguin-Orlando, A., Southon, J., Stiller, M., Wooller, M. J., Baryshnikov, G., Gimranov, D., … Shapiro, B. (2021). Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Molecular Ecology, 30(23), 6144–6161. https://doi.org/10.1111/MEC.15977
Visser, M. E., Adriaensen, F., Van Balen, J. H., Blondel, J., Dhondt, A. A., Van Dongen, S., Du Feu, C., Ivankina, E. V., Kerimov, A. B., De Laet, J., Matthysen, E., McCleery, R., Orell, M., & Thomson, D. L. (2003). Variable responses to large-scale climate change in European Parus populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 367–372. https://doi.org/10.1098/RSPB.2002.2244
Wright, S. (1943). ISOLATION BY DISTANCE. Genetics, 28(2), 114–138. https://doi.org/10.1093/GENETICS/28.2.114
Yu, G. H., Du, L. N., Wang, J. S., Rao, D. Q., Wu, Z. J., & Yang, J. X. (2020). From mainland to islands: colonization history in the tree frog Kurixalus (Anura: Rhacophoridae). Current Zoology, 66(6), 667–675. https://doi.org/10.1093/CZ/ZOAA023
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89027-
dc.description.abstract生物如何適應環境是研究生物多樣性形成的核心問題之一。適應性遺傳變異來源可以是新形成的突變或是既有的遺傳變異(standing genetic variation),我們對於兩者的重要性及他們如何共同作用的理解仍然不足。同時,我們也需要更多的實證研究來釐清生物如何在基因流下達成地區性適應(local adaptation)。了解這兩個生物適應的問題能增加我們對生物多樣性形成的基本原理。本研究我們以在臺灣表現出生殖光週期的地區性適應現象的尼泊爾埋葬蟲為對象,透過比較全年繁殖及季節性繁殖個體間的遺傳差異,我們發現不同族群透過不同的遺傳機制決定生殖光週期的表現型。而重建親緣關係樹的結果顯示,臺灣現今的尼泊爾埋葬蟲族群是由多次的遷入事件所構成。族群遺傳結構分析的結果則顯示染色體倒位幫助了維持族群間的遺傳差異。我們認為多次遷入與染色體倒位共同導致了多種遺傳調控機制的現象,並且也使得新突變與既有遺傳變異共同幫助了基因流下的本地適應。本篇研究展示了複雜的族群形成歷史與染色體倒位在地區性適應中扮演的角色,為生物多樣性的起源機制提供了新的觀點。zh_TW
dc.description.abstractHow organisms adapt to their environment is one of the core questions in studying the formation of biological diversity. The source of adaptive genetic variation can either be newly formed mutations or standing genetic variations. Our understanding of the importance of these two and how they interact is still insufficient. Simultaneously, we also need more empirical research to clarify how organisms achieve local adaptation under gene flow. Understanding these two questions about biological adaptation can enhance our basic principles of the formation of biological diversity. In this study, we focused on the Nicrophorus nepalensis, which exhibits locally adapted reproductive photoperiodism in Taiwan. By comparing the genetic differences between individuals who reproduce throughout the year and those who reproduce seasonally, we found that different populations regulate the phenotype of reproductive photoperiodism through different genetic mechanisms. The results of reconstructing the phylogenetic tree show that the current N. nepalensis populations in Taiwan are composed of multiple immigration events. The results of population genetic structure analysis reveal that chromosomal inversion helps to maintain genetic differences between populations. We believe that multiple migrations and chromosomal inversions have collectively led to the phenomenon of multiple genetic regulatory mechanisms. Additionally, they have allowed new mutations and standing genetic variations to jointly assist in local adaptation under gene flow. This research demonstrates the roles of complex population formation history and chromosomal inversion in local adaptation, providing new perspectives on the mechanisms of origin of biological diversity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:49:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:49:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
摘要 ii
Abstracts iii
Content v
Content of Figures vii
Content of Tables viii
1. Introduction 1
2. Materials and Methods 7
2.1 Establishment and maintenance of buried insect populations in laboratories 7
2.2 Distinguishing reproductive photoperiodism phenotypes via breeding experiments 8
2.3 DNA extraction & whole–genome sequencing 10
2.3 Read processing and variants calling 10
2.4 Population genetic structure and evolutionary history 11
2.5 Identifying genetic variations regulating reproductive photoperiod phenotypes 12
2.6 Relationship of genotype and reproductive photoperiodism phenotype 13
2.7 Defining beneficial alleles 15
2.8 Determining the source of genetic variation 15
3. Results 17
3.1 Population genetic structure of N.nepalensis 17
3.2 Taiwan population is composed of multiple immigrations 18
3.3 Genetic variation in the regulation of the reproductive photoperiodism 19
3.4 Relationship between genotype and reproductive photoperiodism phenotype 22
3.5 Distribution of beneficial alleles among populations 24
4. Discussion 26
4.1 Both standing genetic variations and new mutations contribute to adaptation. 26
4.2 Mutiple immigration events lead to multiple genetic mechanisms 26
4.3 Glacial cycle causes multiple immigration events 28
4.4 Cryptic diversity within Taiwan N. nepalensis 29
4.5 Historical climatic events and chromosomal inversion jointly shape the sympatric intraspecies diversity 31
5. Conclusion 33
6. References 34
7. Figures 40
8. Tables 54
-
dc.language.isoen-
dc.subject既有遺傳變異zh_TW
dc.subject染色體倒位zh_TW
dc.subject尼泊爾埋葬蟲zh_TW
dc.subject地區性適應zh_TW
dc.subjectLocal adaptationen
dc.subjectNicrophorus nepalensisen
dc.subjectChromosomal inversionen
dc.subjectStanding genetic variationen
dc.title間歇性遷入與染色體倒位共同影響尼泊爾埋葬蟲種內遺傳多樣性及環境適應zh_TW
dc.titleIntermittent immigration and chromosomal inversions jointly influence intraspecific genetic diversity and adaptation in burying beetlesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李壽先;李承叡;蔡怡陞;王忠信zh_TW
dc.contributor.oralexamcommitteeShou-Hsien Li;Cheng-Ruei Lee;Isheng Jason Tsai;John Wangen
dc.subject.keyword尼泊爾埋葬蟲,地區性適應,染色體倒位,既有遺傳變異,zh_TW
dc.subject.keywordNicrophorus nepalensis,Local adaptation,Chromosomal inversion,Standing genetic variation,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202302705-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved