Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林增毅zh_TW
dc.contributor.advisorTzeng Yih Lamen
dc.contributor.author王亭雅zh_TW
dc.contributor.authorTing-Ya Wangen
dc.date.accessioned2023-08-16T16:44:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-03-14-
dc.identifier.citationAbedi R., Abedi T., 2020. Some non-linear height–diameter models performance for mixed stand in forests in Northwest Iran. Journal of Mountain Science 17(5), https://doi.org/10.1007/s11629-019-5870-4.

Adame P., Río M., Cañellas I., 2008. A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management 256, 88–98, https://doi.org/10.1016/j.foreco.2008.04.006.

Aishan T., Halik Ü., Betz F., Gärtner P., 2016. Modeling height–diameter relationship for Populus euphratica in the Tarim riparian forest ecosystem, Northwest China. J. For. Res. 27(4), 889–900, https://doi.org/10.1007/s11676-016-0222-5.

Anten N.P.R. and Schieving F., 2010. The role of wood mass density and mechanical constraints in the economy of tree architecture. The American Naturalist, vol. 175, no. 2, https://doi.org/10.1086/649581.

Beers T.W., Dress P. E., Wensel L. C., 1966. Notes and Observations: Aspect Transformation in Site Productivity Research. Journal of Forestry, Volume 64, Issue 10, October 1966, Pages 691–692, https://doi.org/10.1093/jof/64.10.691.

Bettinger P., Boston K., Siry J.P., Grebner D.L., 2017. Forest Management and Planning, second ed. Academic Press, pp.21-63.

Castedo Dorado F., Anta M. B., Parresol B. R., Álvarez González J. G., 2005. A Ctochastic height-diameter model for maritime pine ecoregions in Galicia
(northwestern Spain). Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 62 (5), pp.455-465.

Chenge I.B., 2021. Height–diameter relationship of trees in Omo strict nature forest reserve, Nigeria. Trees, Forests and People 3 (2021) 100051, https://doi.org/10.1016/j.tfp.2020.100051.

Chiou, L.-W., Huang, C.-H., Wu, J.-C., Hsieh, H.-R., 2015. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13.
Curtis R.O., 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-Fir. Forest Science 13: 365-375, https://doi.org/10.1093/forestscience/13.4.365.

Ferraz Filho A.C., Mola-Yudego B., Ribeiro A., Scolforo, J.R.S., Loos R.A., Scolforo H.F., 2018. Height-diameter models for Eucalyptus sp. plantations in Brazil. CERNE, v. 24, n. 1, p. 9-17, http://dx.doi.org/10.1590/01047760201824012466.

Gao X., Li Z., Yu H., Jiang Z., Wang C., Zhang Y., Qi L., Shi L., 2016. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27(2):339–347, http://dx.doi.org/10.1007/s11676-015-0145-6.

Han Y., Lei Z., Ciceu A., Zhou Y., Zhou F., Yu D., 2021. Determining an Accurate and Cost-Effective Individual Height-Diameter Model for Mongolian Pine on Sandy Land. Forests 2021, 12, 1144, https://doi.org/10.3390/f12091144.

Huang S., Price D., Titus S.J., 2000. Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management 129, 125-141.

Huxley, J.S., 1932. Problems of Relative Growth. London: Methuen and Co., Ltd.

Inoue A., Yoshida S. ,2004. Allometric model of the height-diameter curve for even-aged pure stands of Japanese cedar (Cryptomeria japonica). J. For. Res. 9:325-331, https://doi.org/10.1007/s10310-004-0085-z.

John A. Kershaw, Jr., Ducey M.J., Beers W.T., Husch B., 2017. Forest mensuration, fifth ed. Chichester, UK; Hoboken, NJ, pp. 219-220, 231.

Kravkaz-Kuscu I.S., Sariyildiz T., Cetin M., Yigit N., Sevik H., Savaci G., 2018. Evaluation of the soil properties and primary forest tree species in Taskopru (Kastamonu) district. Fresenius Environmental Bulletin, Volume 27 – No. 3/2018 p. 1613-1617.

Lam T.Y., Kershaw J.A., Hajar Z.S.N., Rahman K.A., Weiskittel A.R., Potts M.D., 2017. Evaluating and modelling genus and species variation in height-to-diameter relationships for Tropical Hill Forests in Peninsular Malaysia. Forestry: An International Journal of Forest Research 90, Issue 2, p. 268–278, https://doi.org/10.1093/forestry/cpw051.

Lam T.Y., Fletcher C., Ramage B.S., Doll H.M., Joann C.L., Nur-Zati A.M., Butod E., Kassim A.R., Harrison R.D., and Pott M.D., 2014. Using habitat characteristics to predict faunal diversity in tropical production forests. BIOTROPICA 46(1): 50–57, https://doi.org/10.1111/btp.12069.

Liu S., Zhang X., Li J., Zhu K., 2021. Effects of climate and topography on height-diameter allometry of Pinus ponderosa. Scandinavian Journal of Forest Research, vol. 36, no. 6, 434–441, https://doi.org/10.1080/02827581.2021.1961016.

Lebedev A.V., 2020. New generalised height-diameter models for the birch stands in European Russia. Baltic Forestry 26(2): 499, https://doi.org/10.46490/BF499.

Lhotka J.M., 2012. Height-Diameter Relationships in Sweetgum (Liquidambar styraciflua)-Dominated Stands. South. J. Appl. For. 36(2), http://dx.doi.org/10.5849/sjaf.10-039.

Long S., Zeng S., Liu F., Wang G., 2020. Influence of slope, aspect and competition index on the height-diameter relationship of Cyclobalanopsis glauca trees for improving prediction of height in mixed forests. Silva Fennica vol. 54 no. 1 article id 10242. 20 p., https://doi.org/10.14214/sf.10242.

Mehtätalo L., Miguel S., Gregoire T. G., 2015. Modeling height-diameter curves for prediction. Can. J. For. Res. 45: 826-837, http://dx.doi.org/10.1139/cjfr-2015-0054.
Meng S.X., Huang S, Lieffers V.J., Nunifu T., Yang Y., 2008. Wind speed and crown class influence the height–diameter relationship of lodgepole pine: Nonlinear mixed effects modeling. Forest Ecology and Management 256 570–577, https://doi.org/10.1016/j.foreco.2008.05.002.

Ogana F.N., 2021. A mixed-effects height-diameter model for Gmelinaarborea Roxb stands in Southwest Nigeria. Journal of Forest Research, http://10.1080/13416979.2021.1989131.

Özçelik R., Yavuz H., Karatepe Y., Gürlevik N., Kiriş R., 2014. Development of ecoregion-based height–diameter models for 3 economically important tree species of southern Turkey. Turk. J. Agric. For., 38: 399-412, http://10.1080/10.3906/tar-1304-115.

Paulo J.A., Tomé J., Tomé M., 2011. Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science 68:295-309, https://doi.org/10.1007/s13595-011-0041-y.

R Development Core Team, 2016. R: A language and environment for statistical computing (R Foundation for Statistical Computing Vienna, Austria)

Raptis D.I., Kazana V., Kazaklis A., Stamatiou C., 2021. Mixed‑effects height–diameter models for black pine (Pinus nigra Arn.) forest management. Trees 35:1167–1183, https://doi.org/10.1007/s00468-021-02106-x.

Saud P., Lynch T.B., Anup K. C., Guldin J.M., 2016. Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry 89, 215–229, https://doi.org/10.1093/forestry/cpw004.

Saunders M.R., Wagner R.G., 2008. Height-Diameter Models with Random Coefficients and Site Variables for Tree Species of Central Maine. Ann. For. Sci. 65: 203, https://doi.org/10.1051/forest:2007086.

Sharma R.P., Breidenbach J., 2015. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology, 11:1, 44-53, http://dx.doi.org/10.1080/21580103.2014.957354.

Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M., 2011. Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262, 947–961, http://dx.doi.org/10.1016/j.foreco.2011.05.026.

Shen J., Hu Z., Sharma R.P., Wang G., Meng X., Wang M., Wang Q., Fu L., 2020. Modeling Height–Diameter Relationship for Poplar Plantations Using Combined-Optimization Multiple Hidden Layer Back Propagation Neural Network. Forests 2020, 11, 442, http://dx.doi.org/10.3390/f11040442.

Stankova T. V., Diéguez-Aranda U., 2013. Height-diameter relationships for Scots pine plantations in Bulgaria: optimal combination of model type and application. Ann. For. Res. 56(1): 149-163.

Watt M.S. and Kirschbaum M.U.F., 2011. Moving beyond simple linear allometric relationships between tree height and diameter. Ecological Modelling 222, 3910–3916, https://doi.org/10.1016/j.ecolmodel.2011.10.011.

Weiskittel A.R., Hann D.W., John A. Kershaw, Jr., Vanclay J.K., 2011. Forest Growth and Yield Modeling, first impression, UK, pp. 115-119.

Wykoff W.R., Crookston N.L., Stage A.R., 1982. User’s guide to the stand prognosis model. USDA For. Serv. Gen. Tech. Rep. INT-133.

Yang T.R., Lam T.Y., John A. Kershaw, Jr., 2018. Developing relative stand density index for structurally complex mixed species cypress and pine forests. Forest Ecology and Management 409: 425–433, https://doi.org/10.1016/j.foreco.2017.11.043.

邱祈榮、鄭景鵬、楊勝驛(2013)生長模式應用於臺灣林木生長研究之探討。中華林學季刊 (Quarterly Journal of Chinese Forestry) 46(4): 545-558。

高裕民、王兆桓(2014)和平事業區森林永久樣區調查與分析 CO2 吸存效應。宜蘭大學生物資源學刊10: 1-22。

李隆恩、林文智、陳淯婷、陳巧瑋、王韻皓(2021)六龜地區臺灣杉人工林生長模式之建立。中華林學季刊 (Quarterly Journal of Chinese Forestry) 54(1):29-40。

林政融、顏添明(2021)應用不同結構樹高曲線式模擬臺灣杉人工林之效果評估。台灣林業科學 36(2): 111-25。

劉興旺、鍾立展、王亞男、陳和田、鄭景鵬(2009)臺灣中部地區臺灣杉人工林之生長量與碳吸存量之研究。臺大實驗林研究報告Jour. Exp. For. Nat. Taiwan Univ. 23(3): 201-212。

劉興旺、王亞男、蔡明哲、洪志遠、楊勝驛、鄭景鵬(2012)溪頭地區臺灣杉人工林不同林齡胸徑與樹高生長之研究。臺大實驗林研究報告Jour. Exp. For. Nat. Taiwan Univ. 26(2): 103-111。

王亞男、石哲宇、顏添明、李隆恩(2012)溪頭地區紅檜人工林樹高曲線式及樹高生長模式建立之研究。臺大實驗林研究報告Jour. Exp. For. Nat. Taiwan Univ. 26(2): 93-102。

衛強、王亞男、蔡明哲、鄭景鵬(2010)臺大實驗林溪頭營林區西川試驗地柳杉生長量之研究。臺大實驗林研究報告Jour. Exp. For. Nat. Taiwan Univ. 24(3): 169-183。

顏添明、李久先、黃凱洛(2008)台灣中部地區紅檜及柳杉人工林疏伐示範區生長收穫模式建立之研究。林業研究季刊30(3): 31-40。

顏添明、林政融、謝傅凱(2020)新化林場大葉桃花心木人工林直徑分布量化及碳吸存能力評估。林業研究季刊 42(3): 137-146。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89008-
dc.description.abstract樹高(HT)相對於胸高直徑(DBH)是較難測量的數據,而樹高曲線能由容易測量的DBH 去估計樹高,也就能補齊樹高資料,並更進一步的估計其他參數。若利用國家森林資源調查的資料建立不同樹種的樹高曲線,最大的困難在於一些紀錄稀少的物種,再加上林木的生長難以用單純的線性模型表達,因此本研究選用非線性混和模式加入共變量來建立樹高曲線。資料來自臺灣的第四次森林資源調查資料中 321 個具實際樹高測量數據的物種。選用的模型包含 power (POW),
Wykoff (WYK) 及 von Bertalanffy-Richards (VBR)三種基礎模型。在樹高曲線中加入其他預測變數能提升模型的表現,亦即在混和模式中加入共變量,本研究包含海拔、坡度、坡向、木材密度、BAL、最大樹高、林分密度、林分截面積、針葉樹闊葉樹類別這幾項。在三種模型中,POW 有最低的 RMSE,其值為 2.1322。為解決不等變異性的問題,於建立模式的過程中會對 DBH 進行加權,其中僅VBR 因無法收斂而未加權。WYK 因具有中等 RMSE 值、簡單(僅兩參數)可收斂的加權模型與足夠的預測彈性,是本研究所得最為推薦的模型。共變量的標準化與測試具影響力的觀察值存在與否是在未來的研究中可以改進的地方。
zh_TW
dc.description.abstractHeight-diameter(H-D) models can predict missing height from measured diameter at breast height (DBH) in existing forest inventory so that a full set of tree total height (HT) and DBH is available for assessing forest resources. The few observations of rare species in national forest inventories (NFIs) made it difficult to develop H-D models for these species. Thus, this study used non-linear mixed-effects models with covariates to develop species-specific H-D models for the 321 species with measured HT observations from NFI4 in Taiwan. Power (POW), Wykoff (WYK), and von Bertalanffy-Richards (VBR) models were evaluated. The addition of other predictor variables to HD models may improve the prediction of height, which are covariate in mixed effects models. In this study, elevation (elev), slope, aspect, wood density, sum of
basal area per ha larger than i-th tree (BAL), maximum tree height (hmax), stand density per ha (sden), stand basal area per ha (sba) and class (coniferous or deciduous species) were analyzed. Above the three models, POW has the lowest RMSE of 2.1322. Only VBR weighted model failed to converge. WYK may be the suggested model due to the medium RMSE, simplicity of 2 parameters only, and enough flexibility for prediction. Standardization of variables and testing influential points should improve this study in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:44:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:44:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書……………………………………………………………… i
誌謝……………………………………………………………………………… ii
中文摘要………………………………………………………………………… iii
英文摘要………………………………………………………………………… iv
目錄……………………………………………………………………………… v
圖目錄…………………………………………………………………………… vi
表目錄…………………………………………………………………………… vii
1. Introduction…………………………………………………………………… 1
2. Literature Review……………………………………………………………… 4
2.1 Height-Diameter Models…………………………………………………… 4
2.1.1 Models with two parameters…………………………………………… 4
2.1.2 Models with three parameters……………………………………………7
2.2 Covariates…………………………………………………………………… 12
2.3 Height-Diameter Models Built in Taiwan………………………………… 15
3. Materials and Method………………………………………………………… 22
3.1 Data………………………………………………………………………… 22
3.2 Statistical analysis……………………………………………………………25
4. Results……………………………………………………………………………29
4.1 Power model…………………………………………………………………29
4.2 Wykoff model……………………………………………………………… 35
4.3 von Bertalanffy-Richards model ………………………………………… 39
5. Discussion …………………………………………………………………… 44
6. Conclusion …………………………………………………………………… 49
References ……………………………………………………………………… 50
Appendix I ……………………………………………………………………… 56
Appendix II ……………………………………………………………………… 57
-
dc.language.isoen-
dc.subject非線性混和模式zh_TW
dc.subject共變量zh_TW
dc.subject物種隨機效應zh_TW
dc.subject樹高曲線zh_TW
dc.subject國家森林資源調 查zh_TW
dc.subjectheight-diameter relationshipen
dc.subjectspecies random effecten
dc.subjectnonlinear mixed-effects modelen
dc.subjectNFIsen
dc.subjectcovariatesen
dc.title由環境、競爭與物種特徵建立臺灣樹種樹高曲線zh_TW
dc.titleDevelopment of Species-Specific Height-Diameter Model Driven by Competition, Environmental Factors, and Functional Traits in Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor鄭舒婷zh_TW
dc.contributor.coadvisorSu-Ting Chengen
dc.contributor.oralexamcommittee顏添明;彭炳勳zh_TW
dc.contributor.oralexamcommitteeTian-Ming Yen;Ping-Hsun Pengen
dc.subject.keyword樹高曲線,非線性混和模式,物種隨機效應,共變量,國家森林資源調 查,zh_TW
dc.subject.keywordheight-diameter relationship,NFIs,nonlinear mixed-effects model,species random effect,covariates,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202300659-
dc.rights.note未授權-
dc.date.accepted2023-03-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved