請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88995
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳文章 | zh_TW |
dc.contributor.advisor | Wen-Chang Chen | en |
dc.contributor.author | 鄺芳瑩 | zh_TW |
dc.contributor.author | Tiffany Mulia | en |
dc.date.accessioned | 2023-08-16T16:41:31Z | - |
dc.date.available | 2023-12-13 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | 1. M. W. Matsen, F. S. Bates, J. Chem. Phys. 1997, 106(6), 2436.
2. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969. 3. I. Botiz, S. B. Darling, Mater. Today 2010, 13, 5, 42. 4. D. Wu, Y. Huang, F. Xu, Y. Mai, D. Yan, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1459. 5. I. Otsuka, S. Tallegas, Y. Sakai, C. Rochas, S. Halila, S. Fort, A. Bsiesy, T. Baron, R. Borsali, Nanoscale 2013, 5, 7, 2637. 6. Y. Yoshimura, A. Chandra, Y. Nabae, T. Hayakawa, Soft Matter. 2019, 15, 3497. 7. Y. Liao, K. Liu, W.-C. Chen, B. Wei, R. Borsali, Macromolecules, 2019, 52, 8751. 8. Y. Liao, W.-C. Chen, R. Borsali, Adv. Mater. 2017, 29, 1701645. 9. J. Han, J.-S. Kim, J. M. Shin, H. Yun, Y. Kim, H. Park, B. J. Kim, Polym. Chem. 2019, 10, 4962. 10. M. Mumtaz, Y. Takagi, H. Mamiya, K. Tajima, C. Bouilhac, T. Isono, T. Satoh, R. Borsali, Eur. Polym. J. 2020, 134, 109831. 11. H.-S. Sun, Y. Chen, W.-Y. Lee, Y.-C. Chiu, T. Isono, T. Satoh, T. Kakuchi, W.-C. Chen, Polym. Chem. 2016, 7, 1249. 12. I. W. Hamley, Nanotechnology 2003, 14, R39. 13. Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido, J. J. Watkins, ACS Nano. 2012, 6, 2, 1188. 14. J. H. Lee, D. H. Lee, H. J. Kim, S. Choi, G. E. Park, M. J. Cho, D. H. Choi, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3223. 15. T. Iwata, Angew. Chem. 2015, 54, 3210. 16. R. Kaiser, T. Hunkapiller, L. Hood, Nature 1991, 350, 656. 17. S. Gao, G. Tang, D. Hua, R. Xiong, J. Han, S. Jiang, Q. Zhang, C. Huang, J. Mater. Chem. B. 2019, 7, 709. 18. J. A. Heredia-Guerrero, G. Caputo, S. Guzman-Puyol, G. Tedeschi, A. Heredia, L. Ceseracciu, J. J. Benitez, A. Athanassiou, Mater. Sustain. 2019, 3-4, 100004. 19. Y. Zhong, P. Godwin, Y. Jin, H. Xiao, Adv. Insutri. Eng. Polym. Res. 2020 3, 27. 20. Y. Yang, P. Li, J. Jiao, Z. Yang, M. Lv, Y. Li, C. Zhou, C. Wang, Z. He, Y. Liu, S. Song, Sci. Hortic. 2020, 269, 109375. 21. L. Tan, X. Yu, P. Wan, K. Yang, J. Mater. Sci. Technol. 2013, 29, 502. 22. M. A. Stuart, W. T. Huck, J. Genzer, M. Mu ̈ller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, Nat. Mater., 2010, 9, 101. 23. M. Wei, Y. Gao, X. Li and M. J. Serpe, Polym. Chem., 2017, 8, 127. 24. F. Xia, L. Feng, S. Wang, T. Sun, W. Song, W. Jiang and L. Jiang, Adv. Mater., 2010, 18, 432. 25. A. Bos, J Appl. Polym. Sci. 1972, 16, 2567. 26. M. J. Frampton, T. D. W. Claridge, G. Latini, S. Brovelli, F. Cacialli, H. L. Anderson, Chem. Commun. 2008, 2797. 27. H. Wondraczek, A. Kotiaho, P. Fardim, T. Heinze, Carbohydr. Polym. 2011, 83, 1048. 28. N. Duran, E. Gomez, H. Mansilla, Polym. Degrad. Stab. 1987, 17, 131. 29. J. Delville, C. Joly, P. Dole, C. Bliard, Carbohydr. Polym. 2002, 49, 71. 30. J. Griffiths, Chemical Society Reviews 1972, 1, 481. 31. K. G. Yager, C. J. Barrett, J Photochem. Photobiol. A: Chem. 2006, 182, 250. 32. K.-T. Huang, C.-C. Chueh, W.-C. Chen, Mater. Today Sustain. 2021, 11, 100057. 33. H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 2013, 25, 5498. 34. T. Lee, A. K. Yagati, F. Pi, A. Sharma, J.-W. Choi, P. Guo, ACS Nano. 2015, 9, 7, 6675. 35. J.-S. Benas, L. Veeramuthu, Y.-Y. Chuang, S.-Y. Chuang, F.-C. Liang, C.-J. Cho, W.-Y. Lee, Y. Yan, Y. Zhou, C.-C. Kuo, Org. Electron. 2020, 86, 105925. 36. T. Isono, S. Nakahira, H.-C. Hsieh, S. Katsuhara, H. Mamiya, T. Yamamoto, W.-C. Chen, R. Borsali, K. Tajima, T. Satoh, Macromolecules. 2020, 53, 13, 5408. 37. C.-C. Hung, S. Nakahira, Y.-C. Chiu, T. Isono, H.-C. Wu, K. Watanabe, Y.-C. Chiang, S. Takashima, R. Borsali, S.-H. Tung, T. Satoh, W.-C. Chen, Macromolecules 2018, 51, 13, 4966. 38. Y. Guo, G. Yu, Y. Liu, Adv. Mater. 2010, 22, 4427. 39. W. Shi, Y. Guo, Y. Liu, Adv. Mater. 2020, 32, 1901493. 40. C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Adv. Mater., 2020, 32, 1902434. 41. A. Stikeman, Technol. Rev. 2002, 31. 42. S. R. Forrest, Nature 2004, 428, 911. 43. Z. Bao, A. J. Lovinger, A. Dodabalapur, Adv. Mater. 1997, 9, 42. 44. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. 45. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917. 46. J. C. Scott, L. D. Bozano, Adv. Mater. 2007, 19, 1452. 47. A. Spessot, H. Oh, IEEE Trans. Electron Devices 2020, 67, 4, 1382. 48. S. Moller, C. Perlov, W. Jackson, C. Taussig, S. R. Forrest, Nature 2003, 426, 166. 49. D. Harshini, V. M. Angela, P. Devibala, P. M. Imran, N. S. P. Bhuvanesh, S. Nagarajan, ACS Appl. Electron. Mater. 2022, 4, 4383. 50. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 2004, 3, 918. 51. R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Adv. Mater. 2010, 22, 933. 52. Z. Zhu, Y. Guo, Y. Liu, Mater. Chem. Front. 2020, 4, 2845. 53. Z.-D. Luo, M.-M. Yang, Y. Liu and M. Alexe, Adv. Mater. 2021, 33, 2005620. 54. M. Carroli, A. G. Dixon, M. Herder, E. Pavlica, S. Hecht, G. Bratina, E. Orgiu, P. Samorì, Adv. Mater. 2021, 33, 2007965. 55. H.-Y. Chi, H.-W. Hsu, S.-H. Tung, C.-L. Liu, ACS Appl. Mater. Interfaces 2015, 7, 5663. 56. M.-Y. Liao, Y.-C. Chiang, C.-H. Chen, W.-C. Chen, C.-C. Chueh, ACS Appl. Mater. Interfaces 2020, 12, 36398. 57. W.-C. Yang, Y.-C. Lin, M.-Y. Liao, L.-C. Hsu, J.-Y. Lam, T.-H. Chuang, G.-S. Li, Y.-F. Yang, C.-C. Chueh, W.-C. Chen, ACS Appl. Mater. Interfaces 2021, 13, 20417. 58. C. Sun, Z. Lin, W. Xu, L. Xie, H. Ling, M. Chen, J. Wang, Y. Wei, M. Yi, W. Huang, J. Phys. Chem. C 2015, 119, 18014. 59. S.-W. Cheng, T. Han, T.-Y. Huang, Y.-H. C. Chien, C.-L. Liu, B. Z. Tang, G.-S. Liou, ACS Appl. Mater. Interfaces 2018, 10, 18281. 60. F.-J. Chung, H.-Y. Liu, B.-Y. Jiang, G.-Y. He, S.-H. Wang, W.-C. Wu, C.-L. Liu, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 910. 61. P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim, Y.-Y. Noh, Chem. Mater. 2011, 23, 341. 62. C. H. Kim, Nanoscale Horiz. 2019, 4, 828. 63. R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, Nat. Mater. 2005, 4, 243. 64. X. Chen, X. Han, Q.-D. Shen, Adv. Electron. Mater. 2017, 3, 1600460. 65. H. Li, R. Wang, S.-T. Han, Y. Zhou, Polym. Int. 2020, 69, 533. 66. M. Pei, J. Qian, S. Jiang, J. Guo, C. Yang, D. Pan, Q. Wang, X. Wang, Y. Shi, Y. Li, J. Phys. Chem. Lett. 2019, 10, 10, 2335. 67. W. D. Brown, J. Brewer, Wiley-IEEE Press 1998. 68. L. V. Tho, K.-J. Baeg, Y.-Y. Noh, Nano Converg. 2016, 3, 10. 69. C. Wu, W. Wang, J. Song, Appl. Phys. Lett. 2016, 109, 223301. 70. W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Doetz, S. Mhaisalkar, J. Mater. Chem. 2011, 21, 5203. 71. J.-S. Lee, J. Mater. Chem. 2011, 21, 14097. 72. C. Sun, Z. Lin, W. Xu, L. Xie, H. Ling, M. Chen, J. Wang, Y. Wei, M. Yi, W. Huang, J. Phys. Chem. C 2015, 119, 18014. 73. C. Qian, J. Sun, L.-A. Kong, Y. Fu, Y. Chen, J. Wang, S. Wang, H. Xie, H. Huang, J. Yang, Y. Gao, ACS Photonics 2017, 4, 2573. 74. W. Li, F. Guo, H. Ling, H. Liu, M. Yi, P. Zhang, W. Wang, L. Xie, W. Huang, Small 2018, 14, 1701437. 75. S.-W. Cheng, T. Han, T.-Y. Huang, Y.-H. C. Chien, C.-L. Liu, B. Z. Tang, G.-S. Liou, ACS Appl. Mater. Interfaces 2018, 10, 18281. 76. F.-J. Chung, H.-Y. Liu, B.-Y. Jiang, G.-Y. He, S.-H. Wang, W.-C. Wu, C.-L. Liu, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 910. 77. C.-H. Chen, Y. Wang, H. Tatsumi, T. Michinobu, S.-W. Chang, Y.-C. Chiu, G.-S. Liou, Adv. Funct. Mater. 2019, 29, 1902991. 78. J.-C. Hsu, W.-Y. Lee, H.-C. Wu, K. Sugiyama, A. Hirao, W.-C. Chen, J. Mater. Chem. 2012, 22, 5820. 79. C.-C. Shih, Y.-C. Chiang, H.-C. Hsieh, Y.-C. Lin, W.-C. Chen, ACS Appl. Mater. Interfaces 2019, 11, 45, 42429. 80. W.-C. Yang, Y.-W. Chen, Y.-Y. Yu, Y.-C. Lin, T. Higashihara, W.-C. Chen, Macro. Rapid Commun. 2022, 2200756. 81. Y.-H. Chang, C.-W. Ku, Y.-H. Zhang, H.-C. Wang, J.-Y. Chen, Adv. Funct. Mater. 2020, 30, 2000764. 82. Y.-C. Chen, Y.-C. Lin, H.-C. Hsieh, L.-C. Hsu, W.-C. Yang, T. Isono, T. Satoh, W.-C. Chen, J. Mater. Chem. C 2021, 9, 1259. 83. C.-F. Lin, Y.-C. Lin, W.-C. Yang, L.-C. Hsu, E. Ercan, C.-C. Hung, Y.-Y. Yu, W.-C. Chen, Adv. Elect. Mater. 2021, 7, 210065. 84. H. Klauk, Chem. Soc. Rev. 2010, 39, 2643. 85. C. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313. 86. B. Geffroy, P. le Roy, C. Prat, Polym. Int. 2006, 55, 572. 87. M. Muccini, Nat. Mater. 2006, 5, 605. 88. A. W. Hains, Z. Liang, M. A. Woodhouse, B. A. Gregg, Chem. Rev. 2010, 110, 6689. 89. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094. 90. B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W, Filas, Z. Bao, A. Laduca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521. 91. W. Li, F. Guo, H. Ling, H. Liu, M. Yi, P. Zhang, W. Wang, L. Xie, W. Huang, Small 2018, 14, 1701437. 92. S. T. Han, Y. Zhou, V. A. L. Roy, Adv. Mater. 2013, 25 (38), 5425. 93. Y. Zhai, J.-Q. Yang, Y. Zhou, J.-Y. Mao, Y. Ren, V. A. L. Roy, S.-T. Han, Mater. Horiz. 2018, 5, 641. 94. Y.-C. Lin, W.-C. Yang, Y.-C. Chiang, W.-C. Chen, Small Sci. 2022, 2 (4), 2100109. 95. T.-W. Chang, Y.-S. Li, N. Matsuhisa, C.-C. Shih, J. Mater. Chem. C 2022, 10, 13372. 96. L.-C. Hsu, S. Kobayashi, T. Isono, Y.-C. Chiang, B. J. Ree, T. Satoh, W.-C. Chen, Macromolecules 2020, 53, 7496. 97. L.-C. Hsu, T. Isono, Y.-C. Lin, S. Kobayashi, Y.-C. Chiang, D.-H. Jiang, C.-C. Hung, E. Ercan, W.-C. Yang, H.-C. Hsieh, K. Tajima, T. Satoh, W.-C. Chen, ACS Appl. Mater. Interfaces 2021, 13, 2932. 98. T. Xu, S. Guo, W. Qi, S. Li, M. Xu, W. Wang, ACS Appl. Mater. Interfaces 2020, 12, 21952. 99. C.-H. Chen, Y. Wang, T. Michinobu, S.-W. Chang, Y.-C. Chiu, C.-Y. Ke, G.-S. Liou, ACS Appl. Mater. Interfaces 2020, 12, 6144. 100. C.-Y. Ke, M.-N. Chen, M.-H. Chen, Y.-T. Li, Y.-C. Chiu, G.-S. Liou, Adv. Funct. Mater. 2021, 31, 2101288. 101. C.-C. Shih, Y.-C. Chiang, H.-C. Hsieh, Y.-C. Lin, C.-W. Chen, ACS Appl. Mater. Interfaces 2019, 11, 42429. 102. E. Ercan, Y.-C. Lin, C.-K. Chen, Y.-K. Fang, W.-C. Yang, Y.-F. Yang, W.-C. Chen, J Polym. Sci. 2021, 60, 525. 103. K. Aissou, I. Otsuka, C. Rochas, S. Fort, S. Halila, R. Borsali, Langmuir 2011, 27, 4098. 104. I. Otsuka, Y. Zhang, T. Isono, C. Rochas, T. Kakuchi, T. Satoh, R. Borsali, Macromolecules 2015, 48, 1509. 105. Y.-C. Chiu, I. Otsuka, S. Halila, R. Borsali, W.-C. Chen, Adv. Funct. Mater. 2014, 24, 4240. 106. H.-S. Sun, Y.-C. Chiu, W.-Y. Lee, Y. Chen, A. Hirao, T. Satoh, T. Kakuchi, W.-C. Chen, Macromolecules 2015, 48, 3907. 107. S. Shirke, R. D. Ludescher, Carbohydr. Res. 2005, 340, 2654. 108. Berlman, I. B. Elsevier B.V. 1971, 39. 109. Y.-H. Kim, D.-C. Shin, S.-H. Kim, C.-H. Ko, H.-S. Yu, Y.-S. Chae, S.-K. Kwon, Adv. Mater. 2001, 13, 1690. 110. A. Thangthong, D. Meunmart, N. Prachumrak, S. Jungsuttiwong, T. Keawin, T.; Promarak, V. Sudyoadsuk, Tetrahedron 2021, 68, 1853. 111. Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, S. Yang, J. Am. Chem. Soc. 2014, 136, 3760. 112. W.-Y. Wong, L. Liu, D. Cui, L. M. Leung, C.-F. Kwong, T.-H. Lee, H.-F. Ng, Macromolecules 2005, 38, 4970. 113. Y. Li, T.-H. Kim, Q. Zhao, E.-K. Kim, S.-H. Han, Y.-H. Kim, J. Jang, S.-K. Kwon, J. Polym. Sci. Part A Polm. Chem. 2008, 46, 5115. 114. R. A. Farrell, T. G. Fitzgerald, D. Borah, J. D. Holmes, M. A. Morris, Int. J. Mil. Sci. 2009, 10, 3671. 115. Y.-C. Chiu, H.-S. Sun, W.-Y. Lee, S. Halila, R. Borsali, W.-C. Chen, Adv. Mater. 2015, 27, 6257. 116. C.-C. Hung, Y.-C. Chiu, H.-C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali. S.-H. Tung, W.-C. Chen, Adv. Funct. Mater. 2017, 27, 1606161. 117. E. Ercan, Y.-C. Lin, Y. Sakai-Otsuka, R. Borsali, W.-C. Chen, Adv. Optical Mater. 2022, 10, 2201240. 118. F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Small 2013, 10, 277. 119. Y.-C. Chang, Y.-H. Wang, ACS Appl. Mater. Interfaces 2014, 6, 5413. 120. J.-Y. Lam, G.-W. Jang, C.-J. Huang, S.-H. Tung, W.-C. Chen, ACS Sustainable Chem. Eng. 2020, 8, 5100. 121. R. U. Sheth, H. H. Wang, Nat. Rev. Genet. 2018, 19, 718. 122. H. S. Jung, W.-B. Jung, J. Wang, J. Abbott, A. Horgan, M. Fournier, H. Hinton, Y.-H. Hwang, X. Godron, R. Nicol, H. Park, D. Ham, Sci. Adv. 2022, 8, 30. 123. B. Sun, X. Zhang, G. Zhou, P. Li, Y. Zhang, H. Wang, Y. Xia, Y. Zhao, Org. Electron., 2017, 42, 181. 124. K. Y. Cheong, I. A. Tayeb, F. Zhao, J. M. Abdullah, Nanotechnol. Rev. 2021, 10(1), 680. 125. C. Jin, B. C. Olsen, E. J. Luber, J. M. Buriak, Chem. Mater. 2017, 29, 1, 176. 126. D. Posselt, J. Zhang, D.-M. Smilgies, A. V. Berezkin, I. I. Potemkin, C. M. Papadakis, Prog. Polym. Sci. 2017, 66, 80. 127. M.-S. She, T.-Y Lo, R.-M. Ho, ACS Nano 2013, 7(3), 2000. 128. D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, M. A. Morris, ACS Nano. 2013, 7(8), 6583. 129. D. Borah, S. Rasappa, R. Senthamaraikannan, J. D. Holmes, M. A. Morris, Polym. 2013, 7, 4, 592. 130. S. P. Prakoso, M.-N. Chen, Y.-C. Chiu, Journal of Materials Chemistry C 2022, 10, 13462. 131. P. Mokarian-Tabari, C. Cummins, S. Rasappa, C. Simao, C. M. S. Torres, J. D. Holmes, M. A. Morris Langmuir 2014, 30, 35, 10728–10739. 132. C. Jin, J. N. Murphy, K. D. Harris, J. M. Buriak, ACS Nano 2014, 8, 4, 3979. 133. Z. Qiang, C. Ye, K. Lin, M. L. Becker, K. A. Cavicchi, B. D. Vogt, J. Polym. Sci. B: Polym. Phys. 2016, 54, 15, 1499. 134. T. Bucknall, H. E. Edwards, K. G. Kemsley, J. S. Moore, G. O. Phillips, Carbohydr. Res. 1978, 62, 49. 135. C. Sarazin, N. Delaunay, C. Costanza, V. Eudes, J.-M. Mallet, P. Gareil, Anal. Chem. 2011, 83, 7381. 136. N. Baumgarten, M. Mumtaz, D. H. Merino, E. Solano, S. Halila, J. Bernard, E. Drockenmuller, G. Fleury, R. Borsali, ACS Appl. Mater. Interfaces 2023, 15, 23736. 137. J. D. Cushen, I. Otsuka, C. M. Bates, S. Halila, S. Fort, C. Rochas, J. A. Easley, E. L. Rausch, A. Thio, R. Borsali, C. G. Willson, C. J. Ellison, ACS Nano 2012, 6, 4, 3424. 138. I. Otsuka, T. Isono, C. Rochas, S. Halila, S. Fort, T. Satoh, T. Kakuchi, R. Borsali, ACS Macro Lett. 2012, 1, 1379. 139. Y. W. Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.-T. Han, Adv. Mater. 2018, 30, 1802883. 140. R. Yu, E. Li, X. Wu, Y. Yan, W. He, L. He, J. Chen, H. Chen, T. Guo, ACS Appl. Mater. Interfaces 2020, 12, 13, 15446. 141. K. Lee, H. Han, Y. Kim, J. Park, S. Jang, H. Lee, S. W. Lee, H. Y. Kim, Y. Kim, T. Kim, D. Kim, G. Wang, C. Park, Adv. Funct. Mater. 2021, 31, 2105596. 142. H.-T. Hsu, D.-L. Yang, L. D. Wiyanto, J.-Y. Chen, Adv. Photonics 2021, 2, 2000185. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88995 | - |
dc.description.abstract | 由於無機電子元件的資源有限,故過去十幾年已有不少學者開發高品質有機元件。其中,生質有機材料的獨特光學和電學性質吸引了許多學者的廣泛關注。近年,眾多文獻發表利用不同分子結構和嵌段共聚物設計之糖基材料在光記憶體上的應用,而溶劑退火可以實現高分子的特殊形貌,並對於元件的記憶性能也會有顯著的影響。
首先,在這篇論文的第二章我們使用含有芳烴的麥芽糖基嵌段共聚物作為記憶體材料。在此良好的環境下,我們利用溶劑退火的方法來造成薄膜中的分子流動。通過調整溶劑比例以及退火時間,成功地得到更有趣的形貌。此外,我們也發現發光的芳烴會影響元件的形貌以及記憶能力,導致不同的記憶行為。接著,在第三章我們在DNTT的光記憶體中使用糖-聚苯乙烯作為光電層。為了證明元件機制,我們研究了糖類嵌段共聚物的光學性質。採用微波退火的方式,以微波輻射作為熱源來得到高度規整性以及糖的奈米分散性。高度規整的形貌能夠使電流增強,並可在低電壓和長時間內保持高電流。 最後,本論文主要研究生質有機材料於光記憶體上的應用,並探討分子結構和奈米分散性如何影響記憶行為。我們提升了退火的方法,實現嵌段共聚物的高度規整形貌,提供了元件的記憶特性,以揭示它們在綠色電子元件應用中的潛力。 | zh_TW |
dc.description.abstract | Because of the limited resource for inorganic electronic devices, a new trend of high-quality organic devices has been developed in the past few decades. With their unique optical and electrical properties, bio-based materials have attracted extensive attention of numerous researchers. By utilizing sugar-based materials with different molecular structure and block copolymer designs, diverse memory behavior of green electret-based phototransistor memory is reported. Furthermore, solvent-mediated annealing methods were used to achieve well-ordered morphology of the thin films, which can significantly influence the memory performance of the devices.
Firstly, maltose-based block copolymers with pendent arenes were employed as polymer electret (Chapter 2). Herein, favorable environment to trigger the molecular motion in the thin films were conducted by solvent vapor annealing treatment. More ordered morphologies were successfully obtained adjusting the solvent ratio and annealing time. Moreover, the photoluminescent arenes greatly affect the morphology and charge-trapping capability of the memory devices, resulting in varied memory behaviors of the devices. Secondly, we introduced sugar-block-polystyrene as photoactive dielectric layer in DNTT-based phototransistor memory (Chapter 3). The optical properties of the block copolymers were thoroughly investigated to elucidate the photoexcitation event during the photowriting operation. In addition, by using microwave radiation as the heat source during the annealing process resulted in highly organized sugar nanodomains. The high degree of morphological orientation resulted in enhance photocurrent which can be retained at low operating voltages and over extended durations. In addition, the device imitates the synaptic behavior of biological synapse with low-energy-consumption under ultralow operating voltage. In conclusion, this thesis predominantly focuses on incorporating bio-based materials into memory devices and explores how their molecular structure and nanoscaled morphology impact the memory behaviors. Enhanced annealing treatments were performed to achieve ordered and oriented morphologies of the studied block copolymers. Besides, this thesis also provides the memory characterizations of studied memory devices to unravel their potential in green electronic device application. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:41:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:41:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgment I
Abstract III 中文摘要 V Table of Contents VI Figure Captions IX Table Captions XVIII Chapter 1 Introduction 1 1.1 Introduction to Amphiphilic Block Copolymers 1 1.1.1 Self-Assembly of Block Copolymers 2 1.1.2 Applications of Block Copolymers 3 1.2 Bio-based Materials 5 1.2.1 Light Responsive Bio-based Polymers 6 1.2.2 Applications of Bio-based Polymers 7 1.3 Introduction to Transistor Memory Devices 9 1.3.1 Device Architecture and Working Mechanism 11 1.3.2 Classification of Transistor Memory Devices 12 1.3.2.1 Ferroelectric Transistor Memory 12 1.3.2.2 Floating Gate Transistor Memory 13 1.3.2.3 Electret-Based Transistor Memory 14 1.4 Photonic Transistor Memory Based on Block Copolymers 15 1.4.1 Photomemory Devices in Channel-Only Design 16 1.4.2 Photomemory Devices in Floating Gate Design 17 1.4.3 Photomemory Devices in Polymer Electret Design 18 1.5 Research Objectives 19 1.6 Figures and Tables 22 Chapter 2 Exploring the Charge-Trapping Behavior of Self-Assembled Sugar-based Block Copolymers with a Pendent Design in Photoassisted Memory 32 2.1 Introduction 32 2.2 Experimental Section 34 2.2.1 Materials 34 2.2.2 Characterization 35 2.2.3 Device Fabrication 36 2.3 Results and Discussion 37 2.3.1 Thermal, Optical, and Electrochemical 37 2.3.2 Morphology Analysis 39 2.3.3 Device Characterization 43 2.4 Conclusion 50 2.5 Figures and Tables 52 Chapter 3 Carbohydrate-Based Block Copolymers with Sub-10 nm Face-Centered Cubic Nanostructures for Low-Power-Consuming and Ultraviolet Light-Triggered Synaptic Phototransistors 65 3.1 Introduction 65 3.2 Experimental Section 68 3.2.1 Materials 68 3.2.2 Device Fabrication 69 3.2.3 Characterization 70 3.3 Results and Discussion 71 3.3.1 Thermal, Optical, and Electrochemical 71 3.3.2 Morphology Analysis 73 3.3.3 Phototransistors Device Characterizations 78 3.3.4 Photonic Synapse Characterizations 81 3.3.5 Proposed Mechanism of the Phototransistor Devices 86 3.4 Conclusion 87 3.5 Figures and Tables 89 Chapter 4 Conclusion and Future Outlooks 106 References 109 | - |
dc.language.iso | en | - |
dc.title | 以糖類嵌段共聚物開發生質光電膜與光記憶體應用 | zh_TW |
dc.title | Sugar-based Block Copolymers for Biobased Optoelectronic Film in Memory Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉振良;郭霽慶;林彥丞 | zh_TW |
dc.contributor.oralexamcommittee | Cheng-Liang Liu;Chi-Ching Kuo;Yan-Cheng Lin | en |
dc.subject.keyword | 糖類,嵌段共聚物,自組裝形貌,生質光電膜,光記憶體, | zh_TW |
dc.subject.keyword | Carbohydrate,Block copolymer,Self-assembly morphology,Bio-based optoelectronic,Photomemory, | en |
dc.relation.page | 118 | - |
dc.identifier.doi | 10.6342/NTU202302651 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。