Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88994
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author林冠名zh_TW
dc.contributor.authorGuan-Ming Linen
dc.date.accessioned2023-08-16T16:41:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationBarnard, P., 4 - Austenitic steel grades for boilers in ultra-supercritical power plants, in Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, A. Di Gianfrancesco, Editor. 2017, Woodhead Publishing. p. 99-119.
Allegheny Technologies Incorporated, ATI 17-7™ Precipitation Hardening Stainless Steel. 2014.
Li, Y., et al., A review of the thermal stability of metastable austenite in steels: Martensite formation. Journal of Materials Science & Technology, 2021. 91: p. 200-214.
Xie, Z.J., et al., Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel. Materials & Design, 2014. 59: p. 193-198.
Liu, C., et al., A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. Journal of Materials Processing Technology, 2001. 113(1): p. 556-562.
Celada-Casero, C., J. Sietsma, and M.J. Santofimia, The role of the austenite grain size in the martensitic transformation in low carbon steels. Materials & Design, 2019. 167: p. 107625.
Brofman, P.J. and G.S. Ansell, On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys. Metallurgical Transactions A, 1983. 14(9): p. 1929-1931.
Inokuti, Y. and B. Cantor, Overview 15 The microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys—II. Fe-Ni alloys. Acta Metallurgica, 1982. 30(2): p. 343-356.
Patel, J.R. and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica, 1953. 1(5): p. 531-538.
Tsai, M.C., et al., Phase transformation in AISI 410 stainless steel. Materials Science and Engineering: A, 2002. 332(1): p. 1-10.
Kakeshita, T., T. Saburi, and K. Shimizu, Effects of hydrostatic pressure and magnetic field on martensitic transformations. Materials Science and Engineering: A, 1999. 273-275: p. 21-39.
He, B.B., W. Xu, and M.X. Huang, Increase of martensite start temperature after small deformation of austenite. Materials Science and Engineering: A, 2014. 609: p. 141-146.
Hidalgo, J., K.O. Findley, and M.J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Materials Science and Engineering: A, 2017. 690: p. 337-347.
Chatterjee, S., et al., Mechanical stabilisation of austenite. Materials Science and Technology, 2006. 22(6): p. 641-644.
Bhadeshia, H.K.D.H., Theory of Transformations in Steels. 1st ed. 2021: CRC Press.
Bhadeshia, H.K.D.H. and R.W.K. Honeycombe, Steels: Microstructure and Properties. 4th ed. 2017: Butterworth-Heinemann.
Krauss, G., Steels: Processing, Structure, and Performance. 2nd ed. 2015: ASM International.
Christian, J.W., Basic crystallography and kinetics. Martensite Fundamentals and Technology, ed. E.R. Petty. 1970, London, UK: Longman Group.
Bhadeshia, H.K.D.H., Worked Examples in the Geometry of Crystals. 2nd ed. 1987.
Magee, C.L. and R.G. Davies, The structure, deformation and strength of ferrous martensites. Acta Metallurgica, 1971. 19(4): p. 345-354.
Maki, T., et al., Formation Temperature and Growth Behavior of Thin Plate Martensite in Fe–Ni–C Alloys. Transactions of the Japan Institute of Metals, 1975. 16(1): p. 35-41.
Maki, T., 2 - Morphology and substructure of martensite in steels, in Phase Transformations in Steels, E. Pereloma and D.V. Edmonds, Editors. 2012, Woodhead Publishing. p. 34-58.
Shibata, A., et al., Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys. Acta Materialia, 2009. 57(2): p. 483-492.
Tari, V., A.D. Rollett, and H. Beladi, Back calculation of parent austenite orientation using a clustering approach. Journal of Applied Crystallography, 2013. 46.
Kitahara, H., et al., Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006. 54(5): p. 1279-1288.
Morito, S., et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta Materialia, 2003. 51(6): p. 1789-1799.
Bunshah, R.F. and R.F. Mehl, Trans. AIME, 1953. 197: p. 1251.
Fisher, J.C., J.H. Hollomon, and D. Turnbull, Trans. AIME, 1949. 185: p. 691.
Raghavan, V. and A. Entwisle, Iron and Steel Inst. Special Report, 1965. 93: p. 30.
Raghavan, V., Formation sequence of plates in isothermal martensite transformation. Acta Metallurgica, 1969. 17(10): p. 1299-1303.
Pati, S.R. and M. Cohen, Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy. Acta Metallurgica, 1971. 19(12): p. 1327-1332.
Fullman, R.L., Measurement of Particle Sizes in Opaque Bodies. JOM, 1953. 5(3): p. 447-452.
Thadhani, N.N. and M.A. Meyers, Kinetics of isothermal martensitic transformation. Progress in Materials Science, 1986. 30(1): p. 1-37.
Knorovsky, G.A., Autocatalysis of martensitic transformations. 1977, Massachusetts Institute of Technology.
Shih, C.H., B.L. Averbach, and M. Cohen, Some Characteristics of the Isothermal Martensitic Transformation. JOM, 1955. 7(1): p. 183-187.
Imai, Y. and M. Izumiyama, Jap. Inst. Metals, 1963. 27: p. 171.
Kaufman, L. and M. Cohen, Thermodynamics and kinetics of martensitic transformations. Progress in Metal Physics, 1958. 7: p. 165-246.
Pati, S.R. and M. Cohen, Nucleation of the isothermal martensitic transformation. Acta Metallurgica, 1969. 17(3): p. 189-199.
Soleimani, M., A. Kalhor, and H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: A review. Materials Science and Engineering: A, 2020. 795: p. 140023.
Mirzadeh, H. and A. Najafizadeh, Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Materials Characterization, 2008. 59(11): p. 1650-1654.
Challa, V.S.A., et al., Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Materials Science and Engineering: A, 2014. 613: p. 60-70.
Kisko, A., et al., The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Materials Science and Engineering: A, 2013. 578: p. 408-416.
Talonen, J. and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia, 2007. 55(18): p. 6108-6118.
Zergani, A., H. Mirzadeh, and R. Mahmudi, Evolutions of mechanical properties of AISI 304L stainless steel under shear loading. Materials Science and Engineering: A, 2020. 791: p. 139667.
Galindo-Nava, E.I. and P.E.J. Rivera-Díaz-del-Castillo, Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects. Acta Materialia, 2017. 128: p. 120-134.
Shen, Y.F., et al., Twinning and martensite in a 304 austenitic stainless steel. Materials Science and Engineering: A, 2012. 552: p. 514-522.
Idrissi, H., et al., On the relationship between the twin internal structure and the work-hardening rate of TWIP steels. Scripta Materialia, 2010. 63(10): p. 961-964.
Bolling, G.F. and R.H. Richman, The influence of stress on martensite-start temperatures in Fe-Ni-C alloys. Scripta Metallurgica, 1970. 4(7): p. 539-543.
Bolling, G.F. and R.H. Richman, The plastic deformation of ferromagnetic face-centred cubic Fe-Ni-C alloys. Philosophical Magazine, 1969. 19(158): p. 247-264.
Bolling, G.F. and R.H. Richman, The plastic deformation-transformation of paramagnetic f.c.c. FeNiC alloys. Acta Metallurgica, 1970. 18(6): p. 673-681.
Richman, R.H. and G.F. Bolling, Stress, deformation, and martensitic transformation. Metallurgical Transactions, 1971. 2(9): p. 2451-2462.
Venables, J.A., The martensite transformation in stainless steel. Philosophical Magazine, 1962. 7(73): p. 35-44.
Manganon, D.L. and G. Thomas, Met. Trans., 1970. 1: p. 1577.
Olson, G.B. and M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations. Journal of the Less Common Metals, 1972. 28(1): p. 107-118.
Kelly, P.M., The martensite transformation in steels with low stacking fault energy. Acta Metallurgica, 1965. 13(6): p. 635-646.
He, Y., K. Wang, and K. Shin, Correlation of orientation relationships and strain-induced martensitic transformation sequences in a gradient austenitic stainless steel. Journal of Materials Science, 2021. 56(7): p. 4858-4870.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88994-
dc.description.abstract17-7不鏽鋼在室溫下主要含有沃斯田鐵與麻田散鐵兩相,而由於較少的鎳元素含量,使得沃斯田鐵在室溫下並非穩定相,是否將沃斯田鐵經由各種處理相變為麻田散鐵仍需取決於材料應用的環境。對於17-7不鏽鋼熱處理的工業規範,前人的研究已表明並非最佳的流程,本研究會對其進行改良,最終目標是藉由調控麻田散鐵的相比例以得到不同性質的材料。
論文前半部分會以參考文獻導入需要具備的背景知識,後半部分則討論實驗流程與結果。內文會分為五大重點:多道回火熱處理、深冷處理、冷抽加工、時效機械性質、析出物觀察,前三部分是調控相比例的手段,而後兩部分則會對其進行性質的總結。光學顯微鏡、掃描式電子顯微鏡、穿透式電子顯微鏡是本實驗的主要實驗工具,掃描式電子顯微鏡用以分析相比例及觀察破斷面,而穿透式電子顯微鏡則可觀察對沃斯田鐵、麻田散鐵的形貌及各種析出物。同時,局部方位差角分析也可用於定性解釋許多現象,有助於簡化問題。
由最終的結果可知,多道回火熱處理能得到將近100%的麻田散鐵,使材料的機械性質更接近麻時效不鏽鋼,但缺點是會有較嚴重的敏化;深冷處理仍會留下一定比例的沃斯田鐵,雖然強度較低,但能提供優秀的延性;冷抽加工導入的大量缺陷使材料呈現相對複雜的變形組織,時效前的強度就已獲得大幅提升。整體而言,材料的機械性質並非單純由麻田散鐵的比例決定,還需考慮應變場分布、組織細緻程度、析出物偏好的生成位置。17-7不鏽鋼的各種熱處理皆有其優缺點,因此最重要的是因地制宜選用不同特性的材料。
zh_TW
dc.description.abstract17-7 stainless steel mainly contains two phases at room temperature, which are austenite and martensite. Due to the low content of nickel element, austenite is not a stable phase at room temperature, and whether to transform austenite into martensite through various heat treatments still depends on the process conditions of the material. For the industrial specification of 17-7 stainless steel heat treatment, previous research has shown that it is not the best process. We improve industrial heat treatments in this research, and our ultimate goal is to obtain materials with different properties by tuning the content of martensite.
In the first half of this thesis, references will be used to introduce the required background knowledge, and in the second half, the experimental process and results will be discussed. The text will be divided into five major points: repeated tempering heat treatment, subzero treatment, cold drawing process, mechanical properties after aging, and observation of precipitates. The first three parts are the means to control the phase ratio, and the latter two parts will summarize their properties. Optical microscope, scanning electron microscope and transmission electron microscope are the main experimental tools in this experiment. The scanning electron microscope is used to analyze the phase ratio and observe the fracture surface, while the transmission electron microscope can be used to observe the morphology of austenite and martensite, also, and various precipitates. At the same time, kernel average misorientation can also be used to qualitatively explain many phenomena, which helps to simplify the problem.
From the final results, it can be seen that repeated tempering heat treatment can obtain nearly 100% of martensite, making the mechanical properties of the material closer to maraging stainless steel, but the disadvantage is that there will be serious sensitization; subzero treatment will still leave a certain proportion of austenite, although the strength is relatively low, it can provide excellent ductility; a large number of defects introduced by cold drawing processing make the material present a relatively complex deformation structure, and the strength before aging has been greatly improved. Various heat treatments of 17-7 stainless steel have their advantages and disadvantages. Therefore, the most important thing is to choose materials with different characteristics according to local conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:41:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:41:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 前言 1
第二章 文獻回顧 2
2.1 不鏽鋼及析出硬化型不鏽鋼 2
2.1.1 不鏽鋼簡介及種類 2
2.1.2 半沃斯田鐵系析出硬化型不鏽鋼 3
2.2 沃斯田鐵穩定性 6
2.2.1 沃斯田鐵熱穩定性 6
2.2.2 沃斯田鐵機械穩定性 7
2.3 麻田散鐵簡介 10
2.3.1 麻田散鐵晶體結構 12
2.3.2 麻田散鐵相變態機制 14
2.3.3 麻田散鐵分類與形貌 17
2.3.4 板條狀麻田散鐵與沃斯田鐵的晶體方位關係 20
2.3.5 板條狀麻田散鐵的階層結構 25
2.4 等溫麻田散鐵 27
2.4.1 等溫麻田散鐵相變動力學 27
2.4.2 活化能與等溫相變態 32
2.5 沃斯田鐵變形行為 35
2.5.1 雙晶誘發塑性 36
2.5.2 相變誘發塑性 39
第三章 研究方法 41
3.1 實驗材料 41
3.2 熱處理步驟 42
3.3 實驗儀器與試片製備 45
3.4 分析軟體 48
第四章 結果與討論 49
4.1 HR材微結構觀察 49
4.1.1 金相 49
4.1.2 EBSD相鑑定與KAM分析 50
4.1.3 TEM觀察 53
4.2 重複回火熱處理後之微結構觀察 54
4.2.1 EBSD相鑑定與KAM分析 54
4.3 深冷處理後之微結構觀察 57
4.3.1 DSC分析 57
4.3.2 EBSD相鑑定與KAM分析 57
4.3.3 TEM觀察 65
4.4 冷抽材微結構觀察 67
4.4.1 金相 67
4.4.2 XRD分析 68
4.4.3 TEM觀察 69
4.5 各種熱處理之機械性質比較 83
4.5.1 硬度試驗 83
4.5.2 拉伸試驗 84
4.5.3 拉伸試棒破斷面觀察 86
4.6 材料內各類析出物觀察 89
4.6.1 AlN 89
4.6.2 Cr23C6 91
4.6.3 NiAl 94
第五章 結論 98
第六章 未來工作 99
參考文獻 100
-
dc.language.isozh_TW-
dc.title17-7半沃斯田鐵系析出硬化型不鏽鋼之熱處理對顯微結構及機械性質之影響zh_TW
dc.titleImpact of heat treatments on microstructure and mechanical properties in 17-7 semi-austenitic precipitation stainless steelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王樂民;蘇德徵;鍾采甫zh_TW
dc.contributor.oralexamcommitteeLe-Min Wang;Te-Cheng Su;Tsai-Fu Chungen
dc.subject.keyword17-7不鏽鋼,熱穩定性,機械穩定性,等溫麻田散鐵,雙晶誘發塑性,相變誘發塑性,zh_TW
dc.subject.keyword17-7 stainless steel,thermal stability,mechanical stability,isothermal martensite,twinning-induced plasticity,transformation-induced plasticity,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202303725-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf14.31 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved