請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88958完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋家驥 | zh_TW |
| dc.contributor.advisor | Chia-Chi Sung | en |
| dc.contributor.author | 莫子賢 | zh_TW |
| dc.contributor.author | Tzu-Hsien Mo | en |
| dc.date.accessioned | 2023-08-16T16:31:56Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] QIAO, Wei; LU, Dingguo. A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods. IEEE Transactions on Industrial Electronics, 2015, 62.10: 6546-6557.
[2] DELARUE, Ph, et al. Modelling, control and simulation of an overall wind energy conversion system. Renewable Energy, 2003, 28.8: 1169-1185. [3] NEJAD, Amir Rasekhi; GAO, Zhen; MOAN, Torgeir. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. International Journal of Fatigue, 2014, 61: 116-128. [4] NEJAD, Amir Rasekhi; GAO, Zhen; MOAN, Torgeir. Fatigue reliability-based inspection and maintenance planning of gearbox components in wind turbine drivetrains. Energy Procedia, 2014, 53: 248-257. [5] AL-HAMADANI, Haider Rahman Dawood. System Dynamic Modelling of Wind Turbine Gearbox Under Normal and Transient Operating Conditions. 2018. PhD Thesis. University of Sheffield. [6] WALHA, Lassâad; FAKHFAKH, Tahar; HADDAR, Mohamed. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mechanism and Machine theory, 2009, 44.5: 1058-1069. [7] Cleghorn, W.L. and Dechev, N. (2016) Mechanics of Machines. Oxford: Oxford University Press. [8] AMERICAN GEAR MANUFACTURERS ASSOCIATION, et al. Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth AGMA 908-B89. vol, 1989, 89: 5-8. [9] ZHAI, Guodong; LIANG, Zhihao; FU, Zihao. A mathematical model for parametric tooth profile of spur gears. Mathematical Problems in Engineering, 2020, 2020: 1-12. [10] BONORI, Giorgio, et al. Dynamics of gear meshing: Stiffness evaluation and vibration. In: Proceedings of ISMA 2004, International Conference on Noise and Vibration Engineering, Leuven, Belgium, 20. 2004. p. 933-947. [11] BUDYNAS, Richard Gordon, et al. Shigley's mechanical engineering design. New York: McGraw-Hill, 2011. [12] XUE, Song; HOWARD, Ian. Dynamic modelling of flexibly supported gears using iterative convergence of tooth mesh stiffness. Mechanical Systems and Signal Processing, 2016, 80: 460-481. [13] OMAR, Farag K.; MOUSTAFA, Kamal AF; EMAM, Samir. Mathematical modeling of gearbox including defects with experimental verification. Journal of Vibration and Control, 2012, 18.9: 1310-1321. [14] XU, Rui, et al. New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth. Applied Sciences, 2022, 12.9: 4690. [15] ACSA A29/225 - 225,00 kW - Wind turbine. Online. Welcome to wind-turbine-models.com.[n.d.].Available from: https://en.wind-turbine-models.com/turbines/2376-acsa-a29-225. [16] RODRÍGUEZ, ÁG González; RODRÍGUEZ, A. González; PAYÁN, M. Burgos. Estimating wind turbines mechanical constants. In: Proc. int. conf. renewable energies and power quality (icrepq’07). 2007. p. 27-30. [17] SAKAMOTO, Ryosei, et al. Output power leveling of wind turbine generator for all operating regions by pitch angle control. In: IEEE Power Engineering Society General Meeting, 2005. IEEE, 2005. p. 45-52. [18] HEIER, Siegfried. Grid integration of wind energy: onshore and offshore conversion systems. John Wiley & Sons, 2014. [19] JOHNSON, Kathryn E. Adaptive torque control of variable speed wind turbines. University of Colorado at Boulder, 2004. [20] SARKAR, Md Rasel, et al. Hybrid pitch angle controller approaches for stable wind turbine power under variable wind speed. Energies, 2020, 13.14: 3622. [21] 離岸風電及場址分享 (no date) 永傳能源股份有限公司. Available at: https://www.taiwangenerations.com/publication/articles/Eb20k4 (Accessed: 30 June 2023). [22] CHENG, Ke-Sheng; HO, Cheng-Yu; TENG, Jen-Hsin. Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan. Energies, 2020, 13.24: 6492. [23] DAI, He, et al. An improved analytical model for gear mesh stiffness calculation. Mechanism and Machine Theory, 2021, 159: 104262. [24] SÁNCHEZ, Miryam B.; PEDRERO, Jose I.; PLEGUEZUELOS, Miguel. Contact stress calculation of high transverse contact ratio spur and helical gear teeth. Mechanism and Machine Theory, 2013, 64: 93-110. [25] FLEK, Jan, et al. Determination of mesh stiffness of gear—Analytical approach vs. fem analysis. Applied Sciences, 2021, 11.11: 4960. [26] HIBBELER, Russell Charles. Mecánica de materiales. Pearson educación, 2006. [27] WANG, Yu, et al. Mesh stiffness calculation of helical gears with profile modification. The Journal of Engineering, 2019, 2019.13: 225-230. [28] OSAKUE, Edward, et al. Revised Lewis bending stress capacity model. The Open Mechanical Engineering Journal, 2020, 14.1. [29] REY, G. González; MARTÍN, RJ García; FERNÁNDEZ, P. Frechilla. Estimating gear fatigue life. Gear Solutions, 2007, 2.6. [30] LOTSBERG, Inge; FJELDSTAD, Arne; RONOLD, Knut O. Background for revision of DNVGL-RP-C203 fatigue design of offshore steel structures in 2016. In: International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2016. p. V004T03A015. [31] MCINNES, Charles H.; MEEHAN, P. A. Equivalence of four-point and three-point rainflow cycle counting algorithms. International Journal of Fatigue, 2008, 30.3: 547-559. [32] ARIDURU, Seçil. Fatigue life calculation by rainflow cycle counting method. 2004. Master's Thesis. Middle East technical university. [33] Vibrations in a compound gear train. COMSOL [online]. Získáno z: https://www.comsol.com/model/vibrations-in-a-compound-gear-train-36291 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88958 | - |
| dc.description.abstract | 本文針對風機傳動鏈的意外損壞與剩餘壽命進行預測,提供機組維修人員有足夠可信的狀態參考依據,以最大限度避免離線停機成本,使得風機營運流程能更加完善。
本研究輔以數值模型、受力、及疲勞理論計算出軸承與齒輪等齒輪箱部件的剩餘壽命,再參考台灣風場歷史資料粗估在台灣建置風力發電機能使用的年限。本研究的成果可以利用特定的風機模型和傳動鏈規格,搭配台灣風場特性,成功推算出每月和每年齒輪和軸承的疲勞損傷。這種壽命預測方法的優點在於能夠應對不同特性和不同規格的風場和風機,並得出相對可靠的壽命預測依據。 讀者可以使用本研究提出的壽命預測模型進行數值模擬,並精算出任意風速下任意規格傳動鏈的部件動態行為,並進一步計算疲勞損傷;也可以參考仿造本研究的結果歸納方式,將歷史風場與疲勞損傷整理成盒狀圖,並歸納疲勞損傷趨勢,便於未來為機組維修團隊粗估相似風場分布的傳動鏈壽命情況。 | zh_TW |
| dc.description.abstract | This thesis predicts the accidental damage and remaining life of the wind turbine drive chain, and provides a reliable reference basis for unit maintenance personnel to avoid offline shutdown costs to the greatest extent, so that the wind turbine operation process can be more complete.
This study is supplemented by numerical models, stresses, and fatigue theory to calculate the remaining life of helical gearbox components such as bearings and gears, and then refer to the historical data of Taiwan's wind farms to roughly estimate the service life of wind turbines built in Taiwan. The results of this study can be used to successfully calculate the monthly and annual fatigue damage scores of gears and bearings using specific wind turbine models and drive chain specifications, combined with the characteristics of the wind field in Taiwan. The advantage of this life prediction method is that it can deal with wind farms and wind turbines with different characteristics and specifications, and obtain relatively reliable life prediction basis. Readers can use the life prediction model proposed in this study to perform numerical simulation, and actuate the component dynamic behavior of any drive chain specification at any wind speed, and calculate fatigue damage. Readers can also imitate this study result, organize the historical wind field and fatigue damage into a box diagram, and summarize the fatigue damage trend to roughly estimate the drive chain life in similar wind field distribution for the unit maintenance personnel. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:31:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:31:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv CONTENTS v List of Figures viii Chapter 1 緒論 1 1.1 動機 1 1.2 文獻回顧 2 1.3 研究架構 3 1.4 風機傳動鏈 3 1.4.1 齒輪 4 1.4.2 軸承 8 Chapter 2 理論 10 2.1 齒輪箱模型 10 2.2轉動慣量 14 2.2.1 轉軸與齒輪 14 2.2.2 風機轉子 16 2.3 風機規格 19 2.3.1 風速與輸入功率 20 2.3.2 發電機反力矩 20 2.4 風速模擬 23 2.5 等效彈簧常數 26 2.5.1 轉軸 26 2.5.2 齒輪嚙合 27 2.6 齒輪疲勞分析 33 2.6.1 幾何與受力 33 2.6.2 齒根應力 36 2.6.3 高週期疲勞 40 2.6.4 變動應力 41 2.6.5 線性累積損傷 45 2.7 軸承疲勞分析 46 2.7.1 軸承負載 46 2.7.2 壽命預測 48 2.7.3 線性累積損傷 49 Chapter 3 模擬與實驗驗證 51 3.1 齒輪箱實驗 51 3.2 齒輪嚙合模擬 54 3.3 齒根應力模擬 60 Chapter 4 結果討論 62 Chapter 5 結論與未來展望 84 Reference 86 Appendix 90 A 2018及2019年風速及部件損傷結果一覽 90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 風機傳動鏈 | zh_TW |
| dc.subject | 斜齒輪 | zh_TW |
| dc.subject | 剩餘壽命 | zh_TW |
| dc.subject | 滾珠軸承 | zh_TW |
| dc.subject | 疲勞理論 | zh_TW |
| dc.subject | Remaining Life | en |
| dc.subject | Helical Gear | en |
| dc.subject | Rolling Contact Bearing | en |
| dc.subject | Wind Turbine Drive Chain | en |
| dc.subject | Fatigue Theorem | en |
| dc.title | 基於疲勞理論之台灣風場風機傳動鏈壽命預測 | zh_TW |
| dc.title | Fatigue Theory Prediction of Remaining Life for Wind Turbine Drive Chain in Taiwan Wind Farm | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃心豪;許榮均;鍾承憲 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hao Huang;Rong-Juin Hsu;Cheng-Hsien Chung | en |
| dc.subject.keyword | 風機傳動鏈,剩餘壽命,斜齒輪,滾珠軸承,疲勞理論, | zh_TW |
| dc.subject.keyword | Wind Turbine Drive Chain,Remaining Life,Helical Gear,Rolling Contact Bearing,Fatigue Theorem, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202303440 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
