請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武 | zh_TW |
| dc.contributor.advisor | Tung-Wu Lu | en |
| dc.contributor.author | 陳俊毓 | zh_TW |
| dc.contributor.author | Chun-Yu Chen | en |
| dc.date.accessioned | 2023-08-16T16:31:25Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Garrick, J.G. and R.K. Requa, Role of external support in the prevention of ankle sprains. Med Sci Sports, 1973. 5(3): p. 200-3.
Lin, C.-I., et al., The epidemiology of chronic ankle instability with perceived ankle instability- a systematic review. Journal of Foot and Ankle Research, 2021. 14(1): p. 41. Sharma, N., A. Sharma, and J. Singh Sandhu, Functional performance testing in athletes with functional ankle instability. Asian J Sports Med, 2011. 2(4): p. 249-58. Herzog, M.M., et al., Epidemiology of ankle sprains and chronic ankle instability. J Athl Train, 2019. 54(6): p. 603-610. Barg, A., et al., Ankle osteoarthritis: etiology, diagnostics, and classification. Foot Ankle Clin, 2013. 18(3): p. 411-26. Apkarian, J., S. Naumann, and B. Cairns, A three-dimensional kinematic and dynamic model of the lower limb. J Biomech, 1989. 22(2): p. 143-55. Davis, R.B., et al., A gait analysis data collection and reduction technique. Human Movement Science, 1991. 10(5): p. 575-587. Eng, J.J. and D.A. Winter, Kinetic analysis of the lower limbs during walking: What information can be gained from a three-dimensional model? Journal of Biomechanics, 1995. 28(6): p. 753-758. Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng, 1993. 115(3): p. 211-7. Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: Mathematical description for control. Journal of Biomechanics, 1996. 29(12): p. 1577-1585. Bates, N.A., et al., A novel methodology for the simulation of athletic tasks on cadaveric knee joints with respect to in vivo kinematics. Ann Biomed Eng, 2015. 43(10): p. 2456-66. Cornwall, M.W. and T.G. McPoil, Reliability and validity of center-of-pressure quantification. J Am Podiatr Med Assoc, 2003. 93(2): p. 142-9. Riegger, C.L., Anatomy of the ankle and foot. Phys Ther, 1988. 68(12): p. 1802-14. Brockett, C.L. and G.J. Chapman, Biomechanics of the ankle. Orthop Trauma, 2016. 30(3): p. 232-238. Siegler, S., J. Chen, and C.D. Schneck, The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--Part I: Kinematics. J Biomech Eng, 1988. 110(4): p. 364-73. Holden, J.P., E.S. Grood, and J.F. Cummings, Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. J Biomech, 1995. 28(1): p. 99-102. Herzog, W., et al., Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of Biomechanics, 1996. 29(1): p. 103-109. Hall, G.W., et al., Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of Biomechanics, 1999. 32(2): p. 203-207. Fleming, B.C., G.D. Peura, and B.D. Beynnon, Factors influencing the output of an implantable force transducer. J Biomech, 2000. 33(7): p. 889-93. Ravary, B., et al., Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech (Bristol, Avon), 2004. 19(5): p. 433-47. Siegler, S., et al., A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. J Biomech, 1996. 29(7): p. 943-7. Ye, D., et al., In vivo foot and ankle kinematics during activities measured by using a dual fluoroscopic imaging system: a narrative review. Front Bioeng Biotechnol, 2021. 9: p. 693806. Bahr, R., et al., Mechanics of the anterior drawer and talar tilt tests. A cadaveric study of lateral ligament injuries of the ankle. Acta Orthop Scand, 1997. 68(5): p. 435-41. Tohyama, H., et al., Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. J Orthop Res, 1995. 13(4): p. 609-14. 張家儒, 自行車踩踏時膝關節韌帶與軟骨受力之計算:座椅高低之影響, in 醫學工程學研究所. 2018, 國立臺灣大學. p. 1-89. Wang, Y., et al., Finite element analysis of biomechanical effects of total ankle arthroplasty on the foot. Journal of Orthopaedic Translation, 2018. 12: p. 55-65. Mootanah, R., et al., Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Comput Methods Biomech Biomed Engin, 2014. 17(13): p. 1502-17. Lu, T.W. and J.J. O'Connor, Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. J Anat, 1996. 189 (Pt3) (Pt3): p. 575-85. Conconi, M., A. Leardini, and V. Parenti-Castelli, Joint kinematics from functional adaptation: A validation on the tibio-talar articulation. J Biomech, 2015. 48(12): p. 2960-7. Dreiseitl, S. and L. Ohno-Machado, Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, 2002. 35(5): p. 352-359. Agatonovic-Kustrin, S. and R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal, 2000. 22(5): p. 717-27. Alpaydin, E., Introduction to machine learning, fourth edition. 2020: MIT Press. Sarle, W. Neural networks and statistical models. 1994. Liu, Y.-K., Development of an AI-based method for predicting three-dimensional kinematics from geometry of the knee during pedaling, in Institute of Biomedical Engineering National Taiwan University. 2019. Lorensen, W.E. and H.E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, in Proceedings of the 14th annual conference on Computer graphics and interactive techniques. 1987, Association for Computing Machinery. p. 163–169. Ferrarini, L., et al., GAMEs: growing and adaptive meshes for fully automatic shape modeling and analysis. Med Image Anal, 2007. 11(3): p. 302-14. Besl, P. and N. McKay, Method for registration of 3-D shapes. Robotics '91. Vol. 1611. 1992: SPIE. Myronenko, A. and X. Song, Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell, 2010. 32(12): p. 2262-75. Sarkalkan, N., H. Weinans, and A.A. Zadpoor, Statistical shape and appearance models of bones. Bone, 2014. 60: p. 129-40. Cootes, T.F. and C. Taylor, Statistical models of appearance for computer vision. 2004. Goodall, C., Procrustes Methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B (Methodological), 1991. 53(2): p. 285-339. Heimann, T. and H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 2009. 13(4): p. 543-563. 盧欣怡, 利用雙平面動態X光量測外側韌帶不穩定患者在功能性動作下踝關節之三維運動, in 臺灣大學醫學工程學研究所學位論文. 2018, 國立臺灣大學. p. 1-111. Cignoni, P., C. Rocchini, and R. Scopigno, Metro: measuring error on simplified surfaces. Computer Graphics Forum, 1998. 17(2): p. 167-174. 徐徹菖, 利用工業機械手臂發展關節生物力學測試系統之研究, in 醫學工程學研究所. 2005, 國立臺灣大學. p. 1-76. Hsieh, H.J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomed Eng Online, 2016. 15(1): p. 62. 陳淳晧, 以數位影像相關法與機械手臂系統研究距下關節固定術對踝關節面之生物力學影響, in 醫學工程學研究所. 2013, 國立臺灣大學. p. 1-86. Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech, 2002. 35(4): p. 543-8. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88956 | - |
| dc.description.abstract | 在人體下肢關節中,踝關節為承擔負重的主要關節之一,並在日常生活與運動中都扮演了重要的腳色。以往研究踝關節生物力學的方式分為活體研究和試體研究:活體研究雖然能量測踝關節的運動學資訊,但無法得知踝關節內部的詳細力學表現;而試體研究雖能透過機械手臂來得知踝關節內部之運動學資訊,但卻無法模擬試體於活體時之功能性動作,並以此得知其運動學資訊。為瞭解踝關節於爬樓梯時之力學表現,必須得到屬於此試體具活體意義之爬樓梯動作的運動學資訊,才能用試體實驗來模擬爬樓梯動作,並同時用三維全域變形及應變量測系統拍攝,以此來得知踝關節於爬樓梯時外側韌帶之應變。
本研究以74隻踝關節骨模型與14位受試者爬樓梯的運動學資訊來建立統計模型,再利用最佳化找到14組對應之係數組合來當作類神經網路的訓練資料,透過決定初步的類神經網路架構與改善預測表現等方式,來建立統計形狀模型與運動學資訊之間的連接,以此來預測試體的爬樓梯運動學資訊,並應用於機械手臂之試體實驗,同時用三維全域變形及應變量測系統拍攝,推算出踝關節外側韌帶之應變。 使用最佳化方法所重建的踝關節骨模型平均方均根誤差在脛骨、距骨和跟骨為0.40 mm、0.46 mm和0.58 mm,而在類神經網路訓練的平均誤差在平移與旋轉分別是1.42 mm和2.85度,接著透過訓練好的類神經網路預測出屬於試體的爬樓梯運動學資訊,並用於機械手臂之試體實驗,根據踝關節外側韌帶應變變化可以得知,前距腓韌帶於上樓梯時的應變變化最多,其次則是跟腓韌帶,後距腓韌帶則幾乎沒有變化。 | zh_TW |
| dc.description.abstract | The ankle joint is one of the main weight-bearing joints in the human lower limb joints and plays an important role in daily life and physical activity. Biomechanics of the ankle had been studied mainly in vivo and in vitro ways. In in vivo studies, the kinematics of a living individual can be measured, but not the detailed biomechanics. In vitro studies, detailed biomechanics can be measured by using the robotic testing system, but not in living, functional movements. To understand the biomechanics of the ankle joint upstairs, it is necessary to obtain the living kinematics of upstairs for cadavers for in vitro experiments and can get the strain of the ankle lateral ligaments.
This study collected 74 ankle models and upstairs kinematics data of 14 subjects to establish the database. Through establishing the statistical model of geometry and kinematics, this study simplified the geometry and kinematics with a few simple coefficients and figured out the relationship between them with the artificial neural network, applied it to in vitro experiments, and then calculate the strain of the ankle lateral ligament. The reconstructed ankle joint bone models using the optimization method have the root mean square error of 0.40 mm, 0.46 mm, and 0.58 mm for the tibia, talus, and calcaneus, respectively. The average errors in translation and rotation during artificial neural network training are 1.42 mm and 2.85 degrees, respectively. Subsequently, the trained artificial neural network is used to predict the kinematics of stair climbing of the cadaver and is applied in experiments involving the robotic joint testing system (RJTS). According to the results of the ankle lateral ligament strain, the strain variation of the ATFL is the most significant, followed by the CFL, and the PTFL shows minimal variation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:31:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:31:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 圖目錄 VII 表目錄 IX 第一章 緒論 1 第一節 研究背景 1 第二節 踝關節之解剖學與運動學 2 第三節 文獻回顧 5 一、 活體研究 5 二、 試體研究 7 三、 數學分析模型 9 四、 類神經網路預測運動學 11 第四節 研究目的 13 第二章 材料與方法 15 第一節 訓練模型 15 第二節 統計形狀模型 15 一、模型對應關係(Shape Correspondence) 15 二、模型對齊 16 三、建構模型變異(Shape Variation) 17 第三節 上樓梯運動學資訊 18 第四節 類神經網路 19 一、 類神經網路架構 20 二、 建構及訓練類神經網路 21 第五節 誤差量化 22 一、 模型誤差之量化 22 二、 運動學誤差之量化 22 第六節 機械手臂關節測試系統之應用 22 一、 踝關節試體 23 二、 機械手臂關節測試系統 23 三、 軟體 27 四、 控制理論 29 五、 機器人學理論應用:機械手臂控制 31 第七節 實驗流程 32 第三章 結果 34 第一節 踝關節統計形狀模型 34 第二節 踝關節模型參數化 37 第三節 上樓梯運動學統計模型 38 第四節 類神經網路 40 一、 決定初始神經網路架構 40 二、 最佳類神經網路表現 43 三、 試體上樓梯運動學預測 45 第五節 踝關節試體外側韌帶之應變 46 第四章 討論 48 第五章 結論 51 參考文獻 53 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 踝關節 | zh_TW |
| dc.subject | 踝關節外側韌帶 | zh_TW |
| dc.subject | 機械手臂關節測試系統 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 統計模型 | zh_TW |
| dc.subject | Ankle Lateral Ligament | en |
| dc.subject | Ankle Joint | en |
| dc.subject | Kinematics | en |
| dc.subject | Statistical Model | en |
| dc.subject | ANN | en |
| dc.subject | Robot-based Joint Testing System | en |
| dc.title | 利用踝關節統計形狀與運動模型配合機器學習預測試體關節上樓梯運動以利機械手臂量測外側韌帶之應變 | zh_TW |
| dc.title | Measuring Ankle Lateral Ligament Strains Using Robotic Testing System Driven by Cadaver Joint Kinematics Predicted by Statistical Shape and Kinematic Modeling of the Ankle with Machine Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林正忠;彭志維 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Chung Lin;Chih-Wei Peng | en |
| dc.subject.keyword | 踝關節,踝關節外側韌帶,機械手臂關節測試系統,類神經網路,統計模型,運動學, | zh_TW |
| dc.subject.keyword | Ankle Joint,Ankle Lateral Ligament,Robot-based Joint Testing System,ANN,Statistical Model,Kinematics, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202303304 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
