請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88954完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許家維 | zh_TW |
| dc.contributor.advisor | Jia-Wei Hsu | en |
| dc.contributor.author | 姚舒云 | zh_TW |
| dc.contributor.author | Shu-Yun Yao | en |
| dc.date.accessioned | 2023-08-16T16:30:55Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Antonescu, C. N., Aguet, F., Danuser, G., & Schmid, S. L. (2011). Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell, 22(14), 2588-2600. https://doi.org/10.1091/mbc.E11-04-0362
Antonny, B., Burd, C., De Camilli, P., Chen, E., Daumke, O., Faelber, K., Ford, M., Frolov, V. A., Frost, A., Hinshaw, J. E., Kirchhausen, T., Kozlov, M. M., Lenz, M., Low, H. H., McMahon, H., Merrifield, C., Pollard, T. D., Robinson, P. J., Roux, A., & Schmid, S. (2016). Membrane fission by dynamin: what we know and what we need to know. The EMBO Journal, 35(21), 2270-2284. https://doi.org/10.15252/embj.201694613 Bitsikas, V., Correa, I. R., Jr., & Nichols, B. J. (2014). Clathrin-independent pathways do not contribute significantly to endocytic flux. Elife, 3, e03970. https://doi.org/10.7554/eLife.03970 Boukouris, A. E., Zervopoulos, S. D., & Michelakis, E. D. (2016). Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci, 41(8), 712-730. https://doi.org/10.1016/j.tibs.2016.05.013 Buelto, D., Hung, C. W., Aoh, Q. L., Lahiri, S., & Duncan, M. C. (2020). Plasma membrane to vacuole traffic induced by glucose starvation requires Gga2-dependent sorting at the trans-Golgi network. Biol Cell, 112(11), 349-367. https://doi.org/10.1111/boc.202000058 Chang, C., Su, H., Zhang, D., Wang, Y., Shen, Q., Liu, B., Huang, R., Zhou, T., Peng, C., Wong, C. C., Shen, H. M., Lippincott-Schwartz, J., & Liu, W. (2015). AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Mol Cell, 60(6), 930-940. https://doi.org/10.1016/j.molcel.2015.10.037 Chiarelli, L. R., Morera, S. M., Bianchi, P., Fermo, E., Zanella, A., Galizzi, A., & Valentini, G. (2012). Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS One, 7(2), e32065. https://doi.org/10.1371/journal.pone.0032065 Chu, B., Wang, J., Wang, Y., & Yang, G. (2015). Knockdown of PKM2 induces apoptosis and autophagy in human A549 alveolar adenocarcinoma cells. Mol Med Rep, 12(3), 4358-4363. https://doi.org/10.3892/mmr.2015.3943 DERRICK T. BRAZILL, J. T., AND G. STEVEN MARTIN. (1997). Mck1,a Member of the Glycogen Synthase Kinase 3 Family of Protein Kinases, Is a Negative Regulator of Pyruvate Kinase in the Yeast Saccharomyces cerevisiae. F Valle, E. M., E Ponce, N Flores and F Bolivar. (1996). Basic and applied aspects of metabolic diversity: the phosphoenolpyruvate node. Fu, J., Shinjo, T., Li, Q., St-Louis, R., Park, K., Yu, M. G., Yokomizo, H., Simao, F., Huang, Q., Wu, I. H., & King, G. L. (2022). Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI Insight, 7(5). https://doi.org/10.1172/jci.insight.155260 Gao, X., Wang, H., Yang, J. J., Liu, X., & Liu, Z. R. (2012). Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell, 45(5), 598-609. https://doi.org/10.1016/j.molcel.2012.01.001 Gupta, V., & Bamezai, R. N. (2010). Human pyruvate kinase M2: a multifunctional protein. Protein Sci, 19(11), 2031-2044. https://doi.org/10.1002/pro.505 Jadot, M., Canfield, W. M., Gregory, W., & Kornfeld, S. (1992). Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. Journal of Biological Chemistry, 267(16), 11069-11077. https://doi.org/10.1016/s0021-9258(19)49876-1 James F. Collawn, L. A. K., Li-Fung Sue Liu, John A. Tainer and Ian S. Trowbridge. (1991). Transplanted LDL and mannose-6-phosphate receptor internalization signals promote high-efficiency endocytosis of the transferrin receptor. Jiang, Y., Li, X., Yang, W., Hawke, D. H., Zheng, Y., Xia, Y., Aldape, K., Wei, C., Guo, F., Chen, Y., & Lu, Z. (2014). PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell, 53(1), 75-87. https://doi.org/10.1016/j.molcel.2013.11.001 Karabiyik, C., Vicinanza, M., Son, S. M., & Rubinsztein, D. C. (2021). Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev Cell, 56(13), 1961-1975 e1965. https://doi.org/10.1016/j.devcel.2021.05.010 Larsson-Raznikiewicz, M., & Arvidsson, L. (1971). Inhibition of phosphoglycerate kinase by products and product homologues. Eur J Biochem, 22(4), 506-512. https://doi.org/10.1111/j.1432-1033.1971.tb01570.x Li, X., Jiang, Y., Meisenhelder, J., Yang, W., Hawke, D. H., Zheng, Y., Xia, Y., Aldape, K., He, J., Hunter, T., Wang, L., & Lu, Z. (2016). Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell, 61(5), 705-719. https://doi.org/10.1016/j.molcel.2016.02.009 Liu, V. M., Howell, A. J., Hosios, A. M., Li, Z., Israelsen, W. J., & Vander Heiden, M. G. (2020). Cancer-associated mutations in human pyruvate kinase M2 impair enzyme activity. FEBS Lett, 594(4), 646-664. https://doi.org/10.1002/1873-3468.13648 Lu, Z., & Hunter, T. (2018). Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci, 43(4), 301-310. https://doi.org/10.1016/j.tibs.2018.01.006 MacGurn, J. A., Hsu, P. C., Smolka, M. B., & Emr, S. D. (2011). TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell, 147(5), 1104-1117. https://doi.org/10.1016/j.cell.2011.09.054 Maurer, M. E., & Cooper, J. A. (2006). The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J Cell Sci, 119(Pt 20), 4235-4246. https://doi.org/10.1242/jcs.03217 Mazurek, S., Eigenbrodt, E., Failing, K., & Steinberg, P. (1999). Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells. Journal of Cellular Physiology, 181(1), 136-146. https://doi.org/10.1002/(sici)1097-4652(199910)181:1<136::Aid-jcp14>3.0.Co;2-t Mazurek, S., Grimm, H., Boschek, C. B., Vaupel, P., & Eigenbrodt, E. (2002). Pyruvate kinase type M2: a crossroad in the tumor metabolome. British Journal of Nutrition, 87(S1). https://doi.org/10.1079/bjn2001454 Mazurek, S., Michel, A., & Eigenbrodt, E. (1997). Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem, 272(8), 4941-4952. https://doi.org/10.1074/jbc.272.8.4941 Melo, R. F., Stevan, F. R., Campello, A. P., Carnieri, E. G. S., & De Oliveira, M. B. M. (1998). Occurrence of the Crabtree effect in HeLa cells. Cell Biochemistry and Function, 16(2), 99-105. https://doi.org/10.1002/(sici)1099-0844(199806)16:2<99::Aid-cbf773>3.0.Co;2-2 Merrifield, C. J., & Kaksonen, M. (2014). Endocytic accessory factors and regulation of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol, 6(11), a016733. https://doi.org/10.1101/cshperspect.a016733 Palmai, Z., Seifert, C., Grater, F., & Balog, E. (2014). An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis. PLoS Comput Biol, 10(1), e1003444. https://doi.org/10.1371/journal.pcbi.1003444 Perrais, D., & Merrifield, C. J. (2005). Dynamics of endocytic vesicle creation. Dev Cell, 9(5), 581-592. https://doi.org/10.1016/j.devcel.2005.10.002 R. D. Banks, C. C. F. B., P. R. Evans, R. Haser, D. W. Rice, G. W. Hardy, M. Merrett, and A. W. Phillips. (1979). Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Robinson, M. S. (2015). Forty Years of Clathrin-coated Vesicles. Traffic, 16(12), 1210-1238. https://doi.org/10.1111/tra.12335 Schmid, S. D. C. S. L. (2003). Regulated portals of entry into the cell. Schmid, S. L. (1997). Clathrin-coated vesicle formation and protein sorting: an integrated process. Smith, S. M., & Smith, C. J. (2022). Capturing the mechanics of clathrin-mediated endocytosis. Curr Opin Struct Biol, 75, 102427. https://doi.org/10.1016/j.sbi.2022.102427 Sophia Y. Lunt, V. M., Aaron M. Hosios, William J. Israelsen, Dan Y. Gui, Lauren Newhouse, Martin Ogrodzinski, Vivian Hecht, Kali Xu, Paula N. Marín Acevedo, Daniel P. Hollern, Gary Bellinger, Talya L. Dayton, Stefan Christen, Ilaria Elia, Anh T. Dinh, Gregory Stephanopoulos, Scott R. Manalis, Michael B. Yaffe, Eran R. Andrechek, Sarah-Maria Fendt, and Matthew G. Vander Heiden. (2015). Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell, 57(1), 95-107. https://doi.org/10.1016/j.molcel.2014.10.027 Taylor, M. J., Perrais, D., & Merrifield, C. J. (2011). A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol, 9(3), e1000604. https://doi.org/10.1371/journal.pbio.1000604 Tosoni, D., Puri, C., Confalonieri, S., Salcini, A. E., De Camilli, P., Tacchetti, C., & Di Fiore, P. P. (2005). TTP specifically regulates the internalization of the transferrin receptor. Cell, 123(5), 875-888. https://doi.org/10.1016/j.cell.2005.10.021 Tzin, V., Galili, G., & Aharoni, A. (2012). Shikimate Pathway and Aromatic Amino Acid Biosynthesis. In eLS. https://doi.org/10.1002/9780470015902.a0001315.pub2 Vega, M., Riera, A., Fernandez-Cid, A., Herrero, P., & Moreno, F. (2016). Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex. J Biol Chem, 291(14), 7267-7285. https://doi.org/10.1074/jbc.M115.711408 William Mike Henne, E. B., Michael Meinecke, Emma Evergren,, & Yvonne Vallis, R. M., Harvey T. McMahon. (2010). FCHo Proteins Are Nucleators of Clathrin-Mediated Endocytosis. Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., Shen, C. H., Wen, J., Asara, J., McGraw, T. E., Kahn, B. B., & Cantley, L. C. (2013). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell, 49(6), 1167-1175. https://doi.org/10.1016/j.molcel.2013.01.035 Xiao, G. Y., Mohanakrishnan, A., & Schmid, S. L. (2018). Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis. Proc Natl Acad Sci U S A, 115(41), E9570-E9579. https://doi.org/10.1073/pnas.1810209115 Yagi, H., Kasai, T., Rioual, E., Ikeya, T., & Kigawa, T. (2021). Molecular mechanism of glycolytic flux control intrinsic to human phosphoglycerate kinase. Proc Natl Acad Sci U S A, 118(50). https://doi.org/10.1073/pnas.2112986118 Yang, J. S., Hsu, J. W., Park, S. Y., Li, J., Oldham, W. M., Beznoussenko, G. V., Mironov, A. A., Loscalzo, J., & Hsu, V. W. (2018). GAPDH inhibits intracellular pathways during starvation for cellular energy homeostasis. Nature, 561(7722), 263-267. https://doi.org/10.1038/s41586-018-0475-6 Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K., & Lu, Z. (2012). PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 150(4), 685-696. https://doi.org/10.1016/j.cell.2012.07.018 Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., Gao, X., Aldape, K., & Lu, Z. (2011). Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 480(7375), 118-122. https://doi.org/10.1038/nature10598 Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F., Lyssiotis, C. A., Aldape, K., Cantley, L. C., & Lu, Z. (2012). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol, 14(12), 1295-1304. https://doi.org/10.1038/ncb2629 Zahra, K., Dey, T., Ashish, Mishra, S. P., & Pandey, U. (2020). Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol, 10, 159. https://doi.org/10.3389/fonc.2020.00159 Zala, D., Hinckelmann, M. V., Yu, H., Lyra da Cunha, M. M., Liot, G., Cordelieres, F. P., Marco, S., & Saudou, F. (2013). Vesicular glycolysis provides on-board energy for fast axonal transport. Cell, 152(3), 479-491. https://doi.org/10.1016/j.cell.2012.12.029 Cooper, G. M. (2000). The Cell: A Molecular Approach. (2nd edition.). Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9831/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88954 | - |
| dc.description.abstract | 葡萄糖缺乏對於細胞存活是一個重要的挑戰,會影響細胞內代謝途徑。雖然在葡萄糖缺乏時細胞的能量平衡機制已經被廣泛研究,但其他機制則了解較少。我們進行了體內運輸篩選實驗,包括運鐵蛋白受體(TfR)、表皮生長因子受體(EGFR)的內吞作用、以及葡萄糖聚醣(dextran)的液相內吞作用(基於顯微鏡觀察並定量分析的方法)。在本篇研究中,我們發現醣解酶丙酮酸激酶 M2(PKM2)和磷酸甘油酸激酶 1(PGK1)參與在葡萄糖缺乏之下調控蛋白質內吞運送過程。抑制 PKM2 和PGK1 進一步促進了 TfR 的內吞作用。進一步的研究表明,在葡萄糖缺乏時,內吞的抑制作用與這些酶的催化活性無關。這些發現表明醣解酶在葡萄糖缺乏時抑制蛋白質的內吞作用,這揭示了醣解酵素的新功能,作為蛋白質運送的調控因子。 | zh_TW |
| dc.description.abstract | Glucose starvation has been a fundamental challenge for cell survival to influence intracellular metabolic pathways. Whereas the effect of energy balance upon glucose starvation has been extensively characterized, other mechanisms are less discovered. We conducted in vivo transport screening assays, including endocytosis of transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and fluid-phase endocytosis of dextran, a quantitative microscopy-based approach. Here we identify glycolytic enzymes, pyruvate kinase M2 (PKM2) and phosphoglycerate kinase 1 (PGK1), both participate in regulating endocytic protein trafficking upon glucose starvation. Inhibition of PKM2 and PGK1 further enhances the endocytosis of the TfR. Further characterization suggests that the endocytic inhibition during glucose starvation is independent of their catalytic activities. These findings suggest the inhibitory role of glycolytic enzymes for the endocytic protein transport upon glucose starvation which underlies a critical mechanism of the moonlighting function of glycolytic enzyme as the regulator for protein transport. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:30:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:30:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Contents iv List of Figures viii Chapter 1 Introduction 1 1.1 Literature Review 1 1.1.1 Clathrin-mediated endocytosis (CME) 1 1.1.2 Phosphoglycerate kinase 1 (PGK1) 3 1.1.3 Pyruvate kinase M2 (PKM2) 4 1.1.4 Glucose starvation and endocytic transport 6 1.2 Study Background 7 Chapter 2 Material and Method 9 2.1 Chemicals, proteins, and antibodies 9 2.2 Cell culture and glucose starvation treatment 10 2.3 Sequences for siRNA. 11 2.4 Construction of plasmids 11 2.5 Site-directed mutagenesis 12 2.6 Transfection 13 2.6.1 siRNA knockdown 13 2.6.2 Transfection 14 2.7 SDS-PAGE and Western blotting 15 2.7.1 SDS-PAGE 15 2.7.2 Western blotting 15 2.8 In vivo protein transport assay 16 2.8.1 The fluid-phase uptake of dextran, 16 2.8.2 The endocytosis of EGFR 17 2.8.3 The endocytosis of TfR 17 2.8.4 Protein transport under glucose starvation 17 2.9 Immunofluorescence 18 2.10 Confocal microscopy 18 2.11 Image analysis 19 2.11.1 Colocalization 19 2.11.2 Early endosome number and surface binding Tf 19 2.11.3 Internalized Tf 19 2.12 Subcellular fractionation 20 2.13 Statistical analysis 20 Chapter 3 Experimental Result 22 3.1 Knocking down PGK1 and PKM2 does not affect TfR, EGFR endocytosis, and macropinocytosis. 22 3.2 Glucose starvation promotes endocytosis of TfR, EGFR, and macropinocytosis. 23 3.3 Knocking down PGK1 and PKM2 further promotes TfR endocytosis upon glucose starvation. 25 3.4 Further characterizing synergistic regulation in endocytosis. 27 3.5 Further analyzing intracellular localization of PGK1 and PKM2. 28 Chapter 4 Discussion 30 4.1 Knocking down PGK1 and PKM2 does not affect endocytosis under normal physiological conditions. 30 4.2 Knocking down PGK1 and PKM2 promotes endocytosis upon glucose starvation. 30 Chapter 5 Figure 32 References 69 | - |
| dc.language.iso | en | - |
| dc.subject | 蛋白質兼職功能 | zh_TW |
| dc.subject | 醣解酵素 | zh_TW |
| dc.subject | 內吞運送系統 | zh_TW |
| dc.subject | 內吞作用 | zh_TW |
| dc.subject | 葡萄糖缺乏 | zh_TW |
| dc.subject | endocytic transport | en |
| dc.subject | glycolytic enzyme | en |
| dc.subject | protein moonlighting function | en |
| dc.subject | glucose starvation | en |
| dc.subject | endocytosis | en |
| dc.title | 探討醣解酶在細胞缺乏葡萄糖時內吞作用的調控機制 | zh_TW |
| dc.title | The role of glycolytic enzymes in regulating endocytosis upon glucose starvation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉雅雯;姚季光 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Wen Liu;Chi-Kuang Yao | en |
| dc.subject.keyword | 醣解酵素,內吞運送系統,內吞作用,葡萄糖缺乏,蛋白質兼職功能, | zh_TW |
| dc.subject.keyword | glycolytic enzyme,endocytic transport,endocytosis,glucose starvation,protein moonlighting function, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202303247 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
