Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author蕭廷軒zh_TW
dc.contributor.authorTing-Hsuan Hsiaoen
dc.date.accessioned2023-08-16T16:30:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193.
[2] Kainer, Karl & Buch, F.. (2003). The current state of technology and potential for further development of magnesium applications. Magnesium Alloys and Technology. 1-22.
[3] Tsakiris, V., C. Tardei, and F.M. Clicinschi, Biodegradable Mg alloys for orthopedic implants – A review. Journal of Magnesium and Alloys, 2021. 9(6): p. 1884-1905.
[4] Ke, C., et al., Influence of surface chemistry on the formation of crystalline hydroxide coatings on Mg alloys in liquid water and steam systems. Corrosion Science, 2016. 113: p. 145-159.
[5] Nordlien, Jan. (1996). Morphology and Structure of Oxide Films Formed on MgAl Alloys by Exposure to Air and Water. Journal of The Electrochemical Society - J ELECTROCHEM SOC. 143. 10.1149/1.1837048.
[6] Rajan Ambat, Naing Naing Aung, W Zhou,Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000. 42: p. 1433-1455.
[7] Pawar, S., et al., The Role of Intermetallics on the Corrosion Initiation of Twin Roll Cast AZ31 Mg Alloy. Journal of The Electrochemical Society, 2015. 162(9): p. C442-C448.
[8] Asmussen, R.M., et al., The stability of aluminum-manganese intermetallic phases under the microgalvanic coupling conditions anticipated in magnesium alloys. Materials and Corrosion, 2016. 67(1): p. 39-50.
[9] Heinz Haferkamp, Rudolf Boehm, Uwe Holzkamp, Christian Jaschik, Volker Kaese, Matthias Niemeyer, Alloy Development, Processing and Applications in Magnesium Lithium Alloys. MATERIALS TRANSACTIONS, 2001. 42: p. 1160-1166.
[10] Song, Y., et al., Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 2009. 51(5): p. 1087-1094.
[11] Suman, C., "Creep of Diecast Magnesium Alloys AZ91D and AM60B," SAE Technical Paper 910416, 1991, https://doi.org/10.4271/910416.
[12] Zhu, S.M., et al., The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Materialia, 2010. 63(7): p. 698-703.
[13] Wang, J., et al., Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Materials Science and Engineering: A, 2007. 456(1-2): p. 78-84.
[14] creep-resistant magnesium alloys, materials science and engineering: a, 324 (2002) 103-112.
[15] Takenaka, T., et al., Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 2007. 53(1): p. 117-121.
[16] Galicia, G., et al., Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy. Corrosion Science, 2009. 51(8): p. 1789-1794.
[17] Mathieu, S., et al., A corrosion study of the main constituent phases of AZ91 magnesium alloys. Corrosion Science, 2003. 45(12): p. 2741-2755.
[18] Liu, J., et al., The Special Role of Anodic Second Phases in the Micro-galvanic Corrosion of EW75 Mg Alloy. Electrochimica Acta, 2016. 189: p. 190-195.
[19] Shih, C.-H., et al., The effect of the secondary phases on the corrosion of AZ31B and WE43-T5 Mg alloys. Corrosion Science, 2023. 211.
[20] J.H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 1997. 39: p. 1397-1414.
[21] Beetz, W., XXXIV. On the development of hydrogen from the anode. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009. 32(216): p. 269-278.
[22] Song, G.L. and A. Atrens, Corrosion Mechanisms of Magnesium Alloys. Advanced Engineering Materials, 1999. 1(1): p. 11-33.
[23] Curioni, M. and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium. Electrochimica Acta, 2015. 180: p. 712-721.
[24] Williams, G., N. Birbilis, and H.N. McMurray, The source of hydrogen evolved from a magnesium anode. Electrochemistry Communications, 2013. 36: p. 1-5.
[25] Curioni, M., The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2014. 120: p. 284-292.
[26] Curioni, M., et al., Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2015. 166: p. 372-384.
[27] Salleh, S.H., et al., Enhanced hydrogen evolution on Mg (OH)2 covered Mg surfaces. Electrochimica Acta, 2015. 161: p. 144-152.
[28] Taheri, M., et al., Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochimica Acta, 2014. 116: p. 396-403.
[29] Lysne, D., et al., On the Fe Enrichment during Anodic Polarization of Mg and Its Impact on Hydrogen Evolution. Journal of The Electrochemical Society, 2015. 162(8): p. C396-C402.
[30] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. 2D English ed. Houston Tex: National Association of Corrosion Engineers; 1974.
[31] P. F. King 1966 J. Electrochem. Soc. 113 536.
[32] J. L. Robinson and P. F. King 1961 J. Electrochem. Soc. 108 36
[33] Reidar Tunold, Hans Holtan, May-Britt Hägg Berge, Axel Lasson, Rolf Steen-Hansen, The corrosion of magnesium in aqueous solution containing chloride ions. Corrosion Science, 1977. 14: p: 353-365.
[34] J. Phys. Chem. 1908, 12, 6, 448–467.
[35] J. Am. Chem. Soc. 1954, 76, 2, 363–366.
[36] Song, G. and A. Atrens, Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions. Advanced Engineering Materials, 2007. 9(3): p. 177-183.
[37] Atrens, A. and W. Dietzel, The Negative Difference Effect and Unipositive Mg+. Advanced Engineering Materials, 2007. 9(4): p. 292-297.
[38] Harms, A.C., et al., Dehydrogenation reactions in Mg+(H2O)n clusters. The Journal of Chemical Physics, 1994. 100(5): p. 3540-3544.
[39] The spectrum of magnesium hydride. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1997. 83(561): p. 210-210.
[40] Geraint Williams and Hamilton N. McMurray 2007 ECS Trans. 3 389.
[41] Samaniego, A., B.L. Hurley, and G.S. Frankel, On the evidence for univalent Mg. Journal of Electroanalytical Chemistry, 2015. 737: p. 123-128.
[42] Ma, H., et al., First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments. Acta Materialia, 2017. 130: p. 137-146.
[43] Światowska, J., P. Volovitch, and K. Ogle, The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry. Corrosion Science, 2010. 52(7): p. 2372-2378.
[44] Rossrucker, L., et al., Investigating the Real Time Dissolution of Mg Using Online Analysis by ICP-MS. Journal of The Electrochemical Society, 2014. 161(3): p. C115-C119.
[45] Yang, Y., F. Scenini, and M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica Acta, 2016. 198: p. 174-184.
[46] Chen, H.-W., et al., The Initial Corrosion Behavior of AZ31B Magnesium Alloy in Chloride and Sulfate Solutions. Journal of The Electrochemical Society, 2022. 169(8).
[47] Zeng, R.-c., et al., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: p. s763-s771.
[48] Song, Y., et al., The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corrosion Science, 2012. 65: p. 322-330.
[49] Xin, Y., et al., Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater, 2008. 4(6): p. 2008-15.
[50] Chen, J., et al., AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution. Electrochimica Acta, 2007. 52(9): p. 3299-3309.
[51] Kolics, Artúr, Jeannette Polkinghorne and Andrzej Wiȩckowski. “Adsorption of sulfate and chloride ions on aluminum.” Electrochimica Acta 43 (1998): 2605-2618.
[52] Cao, F., et al., The Inhibitive Effect of Artificial Seawater on Magnesium Corrosion. Advanced Engineering Materials, 2019. 21(8).
[53] Friedrich Horst E. and Barry L. Mordike. 2006. Magnesium Technology : Metallurgy Design Data Applications. Berlin Allemagne: Springer.
[54] Ohser-Wiedemann, Renate, Hollstein, Frank and Bayer, Ullrich. "Corrosion behaviour of hard coatings on Mg substrates" International Journal of Materials Research, vol. 96, no. 7, 2005, pp. 818-822.
[55] Hollstein, Frank & Wiedemann, Renate & Scholz, Jana. (2003). Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surface and Coatings Technology. 162. 261-268. 10.1016/S0257-8972(02)00671-0.
[56] Gray-Munro, Joy & Luan, B.. (2002). Protective Coatings on Magnesium and Its Alloys — A Critical Review. Journal of Alloys and Compounds. 336. 88-113. 10.1016/S0925-8388(01)01899-0.
[57] Wang, B., et al., Microstructure and anti-corrosion properties of supersonic plasma sprayed Al-coating with Nano-Ti polymer sealing on AZ91-Magnesium alloy. Journal of Materials Research and Technology, 2022. 21: p. 2730-2742.
[58] Umehara, H., S. Terauchi, and M. Takaya, Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys. Materials Science Forum, 2000. 350-351: p. 273-282.
[59] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999, 122: p. 73-93.
[60] Gnedenkov, A.S., et al., Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. Journal of Magnesium and Alloys, 2022. 10(12): p. 3589-3611.
[61] Forno, A. & Bestetti, Massimiliano. (2011). Electroless and Electrochemical Deposition of Metallic Coatings on Magnesium Alloys Critical Literature Review. 10.5772/13975.
[62] Zeng, L., et al., Preparation and characterization of a double-layer coating on magnesium alloy AZ91D. Electrochimica Acta, 2010. 55(9): p. 3376-3383.
[63] Chateauminois, Antoine. (2000). ASM Handbook: Surface Engineering (Vol 5). Tribology International - TRIBOL INT. 33. 67-67. 10.1016/S0301-679X(00)00006-2.
[64] P. Campestrini et al 2004 J. Electrochem. Soc. 151 B59.
[65] Verdalet-Guardiola, X., et al., Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy. Corrosion Science, 2019. 155: p. 109-120.
[66] Su, H.-Y. and C.-S. Lin, Effect of additives on the properties of phosphate conversion coating on electrogalvanized steel sheet. Corrosion Science, 2014. 83: p. 137-146.
[67] Li, Q., et al., The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D. Electrochimica Acta, 2010. 55(3): p. 887-894.
[68] Tsn, Sankara Narayanan. (2005). Surface Pretreatment by Phosphate Conversion Coatings - a Review. Reviews on Advanced Materials Science. 9. 130-177.
[69] Dabalà, Manuele & Armelao, Lidia & Buchberger, Alberto & Calliari, Irene. (2001). Cerium-based conversion layers on aluminum alloys. Applied Surface Science. 172. 312-322. 10.1016/S0169-4332(00)00873-4.
[70] Xu, F. & Carey, S. & Rudd, Amy & Breslin, Carmel & Mansfeld, Florian. (2000). The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science. 42. 10.1016/S0010-938X(99)00076-1.
[71] Bethencourt, Manuel & Botana, Javier & Cano, M.J. & Marcos-Bárcena, Mariano. (2002). High protective, environmental friendly and short-time developed conversion coatings for aluminium alloys. Applied Surface Science - APPL SURF SCI. 189. 162-173. 10.1016/S0169-4332(02)00129-0.
[72] Lin, C.S. and S.K. Fang, Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloys. Journal of The Electrochemical Society, 2005. 152(2).
[73] Lin, Chao-Sung & Li, Wei-Jen. (2006). Corrosion Resistance of Cerium-Conversion Coated AZ31 Magnesium Alloys in Cerium Nitrate Solutions. Materials Transactions - MATER TRANS. 47. 1020-1025. 10.2320/matertrans.47.1020.
[74] Lee, Y.L., F.J. Chen, and C.S. Lin, Corrosion Resistance Studies of Cerium Conversion Coating with a Fluoride-Free Pretreatment on AZ91D Magnesium Alloy. Journal of The Electrochemical Society, 2012. 160(1): p. C28-C35.
[75] Su, H.Y., W.J. Li, and C.S. Lin, Effect of Acid Pickling Pretreatment on the Properties of Cerium Conversion Coating on AZ31 Magnesium Alloy. Journal of The Electrochemical Society, 2012. 159(5): p. C219-C225.
[76] X.B. Chen, N. Birbilis, T.B. Abbott; Review of Corrosion-Resistant Conversion Coatings for Magnesium and Its Alloys. CORROSION 1 March 2011; 67 (3): 035005–1–035005–16.
[77] Lee, Y.L., et al., Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Applied Surface Science, 2013. 276: p. 578-585.
[78] Elsentriecy, H.H., K. Azumi, and H. Konno, Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy. Surface and Coatings Technology, 2007. 202(3): p. 532-537.
[79] Huang, Y.H., Y.L. Lee, and C.S. Lin, Acid Pickling Pretreatment and Stannate Conversion Coating Treatment of AZ91D Magnesium Alloy. Journal of The Electrochemical Society, 2011. 158(9).
[80] Lin, C.S., et al., Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Science, 2006. 48(1): p. 93-109.
[81] Mrákavová, Marta & Treindl, Ludovit. (1990). Kinetics of guyard's reaction with regard to permanganate chemical oscillators. Collection of Czechoslovak Chemical Communications - COLLECT CZECH CHEM COMMUN. 55.
[82] Lin, C.S., et al., Formation of Phosphate/Permanganate Conversion Coating on AZ31 Magnesium Alloy. Journal of The Electrochemical Society, 2006. 153(3).
[83] Lee, Y.L., et al., Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013. 70: p. 74-81.
[84] Mosiałek, M., et al., Phosphate–permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surface and Coatings Technology, 2011. 206(1): p. 51-62.
[85] Milošev, I. and G.S. Frankel, Review—Conversion Coatings Based on Zirconium and/or Titanium. Journal of The Electrochemical Society, 2018. 165(3): p. C127-C144.
[86] Cerezo, J., et al., Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy. Surface and Coatings Technology, 2014. 254: p. 277-283.
[87] Jan P. Nordin, David J. Sullivan, Brian L. Phillips, William H. Casey, Mechanisms for fluoride-promoted dissolution of bayerite [β-Al(OH)3(s)] and boehmite [γ-AlOOH]: 19F-NMR spectroscopy and aqueous surface chemistry. Geochimica et Cosmochimica Acta, 1999. 63:p. 3513-3524.
[88] Verdier, S., et al., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Applied Surface Science, 2004. 235(4): p. 513-524.
[89] Verdier, S., et al., An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings. Surface and Coatings Technology, 2006. 200(9): p. 2955-2964.
[90] Verdier, S., et al., Monochromatized x-ray photoelectron spectroscopy of the AM60 magnesium alloy surface after treatments in fluoride-based Ti and Zr solutions. Surface and Interface Analysis, 2005. 37(5): p. 509-516.
[91] Benbouzid, A.Z., et al., A new look on the corrosion mechanism of magnesium: An EIS investigation at different pH. Corrosion Science, 2022. 205.
[92] Atrens, A., et al., Review of Mg alloy corrosion rates. Journal of Magnesium and Alloys, 2020. 8(4): p. 989-998.
[93] Jan Halvor Nordlien et al 1995 J. Electrochem. Soc. 142 3320.
[94] Brady, M.P., et al., Film Breakdown and Nano-Porous Mg(OH)2Formation from Corrosion of Magnesium Alloys in Salt Solutions. Journal of The Electrochemical Society, 2015. 162(4): p. C140-C149.
[95] Duan, G., et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corrosion Science, 2018. 135: p. 197-206.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88951-
dc.description.abstract鎂合金因為低密度與高比強度逐漸受到重視,尤其適合作為3C電子產品的機殼。然而,鎂合金因為其極高的化學活性,在一般的使用環境下即會發生腐蝕,因此需要化成皮膜的保護提升其抗蝕性。化成皮膜本身為金屬氧化物與鹽類,其存在會降低鎂合金的接觸阻抗,進而降低電磁遮蔽效應,對於其在電子產品上的應用相當不利。並且,鎂合金上常見的化成皮膜通常較厚,且具有脫水裂紋等缺陷,對於耐蝕性的增強有限。除此之外,AZ31B為單相鎂合金,然而因為熔煉以及合金元素的添加會使得α-鎂上有隨機分布的Al8Mn5析出物。這些介金屬相在化成過程中會產生伽凡尼腐蝕進而導致膜層不均。本研究即透過六氟鋯酸的添加進入過錳酸鹽的化成液中,藉由在底材上生成氟化鎂抑制強氧化劑過錳酸根帶來的劇烈腐蝕,從而沉積一個均勻且薄的膜層在AZ31B鎂合金上。
本研究首先以電子顯微鏡觀察其微觀結構,發現化成膜層可分為一層較為疏鬆的氧化鎂/氫氧化鎂和氟化鎂的內層,以及由氧化鎂/氫氧化鎂、氟化鎂和二氧化錳的所組成的緻密外層。過量的六氟鋯酸添加雖然會降低底材上膜層的厚度,但是將導致鋁錳界金屬相的去合金化,並且在原址之上覆蓋較厚的氧化層,導致接觸阻抗的增加。電化學分析證實六氟鋯酸的添加可以大幅降低鎂合金的腐蝕電流,並且提升交流阻抗測試中等效電路的總阻抗值。長時間浸泡測試中,含有六氟鋯酸的化成皮膜其脫色的情形較為緩和,說明此膜層在長時間的腐蝕環境中仍具有抵抗力。整體膜層厚度的下降也使得接觸阻抗的數值相較傳統的過錳酸鹽化成皮膜較低,其結果接近美國軍事規範MIL-DTL-5541F中的標準。
zh_TW
dc.description.abstractMagnesium and its alloys are gradually valued in recent years because of their low density, high specific strength and good electro-magnetic shielding effect. These extinguished properties make them potential candidates for casing of electronic devices. However, magnesium suffers from corrosion because of its extremely high chemical reactivity. Therefore, conversion coatings are required to protect magnesium substrates. Conversion films are usually oxides or metal salts which are poor electric conductors. Thick conversion coatings decrease the electrical conductivity of magnesium alloys, which undermines the electro-magnetic shielding effect of magnesium casing. Common conversion coatings on magnesium alloys are thick and full of dehydration cracks, providing limited improvement in corrosion resistance. Furthermore, the flatness of the conversion coating differs from the microstructure of the substrate. AZ31B is a single-phase alloy on which α-Mg is the dominant phase. However, Al8Mn5 intermetallic particles are randomly distributed on this alloy during solidification. Al8Mn5 precipitates are cathodic sites which inflicts galvanic corrosion, causing the uneven distribution of the film. In this research, a thin and uniform conversion coating is deposited on AZ31B magnesium alloy by adding H2ZrF6 into the permanganate solution. H2ZrF6 inhibits the massive dissolution of magnesium induced by permanganate ions which are strong oxidizing agents.
This study starts from the observation of surface morphologies of the coatings using SEM and TEM. A double-layer structure is revealed: a loose inner layer composed of MgO/Mg(OH)2 and MgF2; a compact outer layer consisting of MgO/Mg(OH)2, MgF2 and MnO2. Excess H2ZrF6 reduces the thickness of the coatings, though, preferential dissolution of aluminum in Al8Mn5 particles is found. Also, severe galvanic corrosion and trench around Al-Mn sites induce a dome-like structure on the surface, resulting in the increase in electric contact resistance. Results of electro-chemical measurements show that the MgF2 containing films significantly decelerate the corrosion rate. Besides, EIS measurement indicates an increase in total impedance of the film. In the 24 hours immersion test, little portion of H2ZrF6 added conversion coating is damaged while specimen without H2ZrF6 is almost fully decolorized during the test. The electric contact resistance of H2ZrF6 added specimen is greatly lower than that without H2ZrF6. Its value is close to the standard set up in MIL-DTL-5541F.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:30:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:30:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Paper Review 2
2.1 Introduction of magnesium 2
2.1.1 Properties of magnesium 2
2.2 Magnesium alloys 3
2.2.1 Classification of magnesium alloys 3
2.2.2 Magnesium-aluminum alloys 4
2.2.3 Magnesium-lithium alloys 5
2.2.4 Magnesium-rare earth alloys 6
2.3 Corrosion Behavior of Magnesium 7
2.3.1 Corrosion of Pure Magnesium 7
2.3.2 Negative Difference Effect 8
2.3.2.1 Dark Corrosion Product and Impurity Elements 9
2.3.2.2 Film Rupture 10
2.3.2.3 Univalent Magnesium model 12
2.3.2.4 Corrosion Front 14
2.3.3 Effect of Environment on Corrosion of Magnesium 16
2.3.3.1 Chloride 17
2.3.3.2 Sulfate 18
2.4 Protection of Magnesium 19
2.4.1 Physical Methods 20
2.4.2 Electro-chemical Treatments 21
2.4.3 Electroless Treatments 23
2.4.3.1 Chromate conversion coatings 24
2.4.3.2 Phosphate Conversion Coatings 25
2.4.3.3 Cerium Conversion Coatings 25
2.4.3.4 Stannate Conversion Coatings 26
2.4.3.5 Permanganate Conversion Coatings 27
2.4.3.6 Hexafluorozirconic acid Conversion Coatings 28
Chapter 3 Experiments 31
3.1 Specimen Preparation 32
3.2 Conversion Bath 32
3.3 Surface Analysis 33
3.3.1 Surface Morphology 33
3.3.2 Cross-Sectional Observation 33
3.4 Electro-chemical Measurements 34
3.4.1 Potentio-Dynamic Polarization(PDP) 35
3.4.2 Electrochemical Impedance Spectroscopy 35
3.5 Application Tests 35
3.5.1 Immersion Test 35
3.5.2 Electric Contact Resistance Test 36
Chapter 4 Results and Discussion 37
4.1 Microstructure of AZ31B Substrate 37
4.2 OCP of Conversion Process 38
4.3 Microstructure of Conversion Coatings 39
4.3.1 Surface Morphology 39
4.3.2 Cross-Sectional Analysis 44
4.3.2.1 Cross-section Analysis by SEM 44
4.3.2.2 Cross-Sectional Analysis by TEM 46
4.4 Electro-Chemical Analysis 60
4.4.1 Potentio-Dynamic Polarization 60
4.4.2 Electrochemical Impedance Spectroscopy 62
4.5 Tests for Application 65
4.5.1 Immersion Test 65
4.6 Electric Contact Resistance 71
4.7 Mechanism of Conversion Coatings 72
Chapter 5 Conclusions 77
Chapter 6 Future Works 78
REFERENCE 79
-
dc.language.isoen-
dc.title六氟鋯酸添加對於AZ31B鎂合金上過錳酸鹽化成皮膜的影響zh_TW
dc.titleEffect of Addition of H2ZrF6 on the properties of permanganate conversion coatings on AZ31B magnesium alloyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林景崎;汪俊延;葛明德;朱鵬維zh_TW
dc.contributor.oralexamcommitteeJing-Chie Lin;Jun-Yen Uan;Ming-Der Ger;Peng-Wei Chuen
dc.subject.keyword鎂鋁合金,六氟鋯酸,過錳酸鹽,化成皮膜,電化學,zh_TW
dc.subject.keywordMagnesium-aluminum alloy,hexafluoro-zirconic acid,permanganate,conversion coating,electro-chemistry,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202303647-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
6.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved