請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林明仁 | zh_TW |
| dc.contributor.advisor | Ming-Jen Lin | en |
| dc.contributor.author | 王裕勛 | zh_TW |
| dc.contributor.author | Yu-Hsun Wang | en |
| dc.date.accessioned | 2023-08-16T16:27:57Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] A. Aouad, J. Feldman, D. Segev, and D. Zhang. The click-based mnl model: A novel framework for modeling click data in assortment optimization. 2021.
[2] O. Chapelle, Y. Chang, and T.-Y. Liu. Future directions in learning to rank. Proceedings of Machine Learning Research, 14, 2011. [3] J. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Technical report, 1991. [4] C. Gomez-Uribe and N. Hunt. The netflix recommender system. ACM Transactions on Management Information Systems (TMIS), 6:1 – 19, 2015. [5] N. Heidari, P. Moradi, and A. Koochari. An attention-based deep learning method for solving the cold-start and sparsity issues of recommender systems. Knowledge-Based Systems, 256:109835, 2022. [6] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’06, page 1097–1101, New York, NY, USA, 2006. Association for Computing Machinery. [7] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Konstan. Exploring the filter bubble: The effect of using recommender systems on content diversity. WWW ’14, page 677–686, New York, NY, USA, 2014. Association for Computing Machinery. [8] E. Pariser. The filter bubble : what the Internet is hiding from you. Penguin Press, New York, 2011. [9] D. Peppers and M. Rogers. The one to one future: Building relationships one customer at a time. Currency Doubleday New York, 1993. [10] D. Read, G. Antonides, L. van den Ouden, and H. Trienekens. Which is better: Simultaneous or sequential choice? Organizational Behavior and Human Decision Processes, 84(1):54–70, 2001. [11] D. Read and G. Loewenstein. Diversification bias: Explaining the discrepancy in variety seeking between combined and separated choices. Journal of Experimental Psychology: Applied, 1:34–49, 1995. [12] P. E. Rossi and G. M. Allenby. Bayesian statistics and marketing. Marketing Science, 22(3):304–328, 2003. [13] N. Sahoo, P. V. Singh, and T. Mukhopadhyay. A hidden markov model for collaborative filtering. MIS Quarterly, 36(4):1329–1356, 2012. [14] Y. Song, N. Sahoo, and E. Ofek. When and how to diversify—a multicategory utility model for personalized content recommendation. Management Science, 65(8):3737– 3757, 2019. [15] J. Wang and Y. Zhang. Utilizing marginal net utility for recommendation in e-commerce. SIGIR ’11, page 1003–1012, New York, NY, USA, 2011. Association for Computing Machinery. [16] J. Wasilewski and N. Hurley. Incorporating diversity in a learning to rank recommender system. 05 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88943 | - |
| dc.description.abstract | 推薦系統在電子商務中扮演著重要角色,幫助用戶快速找到所需商品或服務。隨著大數據和機器學習的進步,推薦系統的準確率和效率已有顯著提升。然而,現有推薦系統仍然存在個人化程度不足和推薦清單單調等問題。
為解決這些問題,本研究引入效用函數以刻劃用戶偏好。透過效用函數,我們結合用戶行為和商品特徵,提供更個性化的推薦,同時協助用戶探索可能感興趣的商品。 研究中,我們分析電商平台的瀏覽資料,利用馬可夫鏈蒙地卡羅(MCMC) 演算法估計效用函數,從而獲得每個用戶的偏好參數。與過去的研究相比,我們提出了對參數的解讀方法,深入了解每個用戶的特性,在後續進行其他分析中能提供不小的幫助。 此外,我們提出了三種版面配置方法,並分析了各自的優缺點,為平台方提供了針對不同用戶制定推薦策略的指引。透過本研究,我們期望能提升推薦系統的個人化程度並改善用戶體驗,同時為電子商務平台提供有益的參考,進一步提高推薦系統的準確性和效能。 | zh_TW |
| dc.description.abstract | Recommendation systems play a crucial role in e-commerce, facilitating users in swiftly discovering desired products or services. With advancements in big data and machine learning, recommendation systems have witnessed significant improvements in accuracy and efficiency. However, existing recommendation systems still suffer from issues such as insufficient personalization and monotonous recommendation lists.
To address these challenges, this study introduces utility functions to characterize user preferences. By leveraging utility functions, we amalgamate user behavior and product features to provide more personalized recommendations, while assisting users in exploring potentially interesting items. In this research, we analyze browsing data from e-commerce platforms and employ the Markov Chain Monte Carlo (MCMC) algorithm to estimate utility functions, thereby obtaining preference parameters for each user. Unlike prior studies, we propose an interpretation method for these parameters, gaining deeper insights into individual user characteristics and offering valuable guidance for further analyses. Furthermore, we propose three layout configuration methods and analyze their respective pros and cons, offering platform administrators guidance to formulate tailored recommendation strategies for different user segments. Through this study, we aim to enhance the personalization of recommendation systems and improve user experience, while providing beneficial insights for e-commerce platforms to further enhance the accuracy and efficiency of their recommendation systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:27:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:27:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
摘要iii Abstract v 目錄vii 圖目錄xi 表目錄xiii 第一章研究動機與目的1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 第二章文獻回顧5 第三章資料特徵與描述9 3.1 資料來源及處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 資料概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 工作階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 會員. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 瀏覽時段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 第四章模型設計19 4.1 效用函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 偏好係數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.2 替代彈性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.3 轉換成本. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.4 邊際效用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 估計方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 機率計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 概似函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3 參數分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.4 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 第五章估計結果及分析29 5.1 估計結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.1 後驗分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.2 分類相關性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 迴歸分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第六章應用方法35 6.1 準確率比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2 版面配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.1 冷啟動. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.2 一次推薦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.3 抽樣推薦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第七章總結41 參考文獻43 附錄A — 收斂檢定47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 馬可夫鏈 | zh_TW |
| dc.subject | 電子商務 | zh_TW |
| dc.subject | 效用函數 | zh_TW |
| dc.subject | 蒙地卡羅 | zh_TW |
| dc.subject | Utility Function | en |
| dc.subject | Markov Chain | en |
| dc.subject | E-Commerce | en |
| dc.subject | Recommendation System | en |
| dc.subject | Monte Carlo | en |
| dc.title | 利用效用函數刻劃使用者偏好—以C2C 平台推薦系統為例 | zh_TW |
| dc.title | Characterize User Preferences Using Utility Function - A C2C Platform Recommendation System as an Example | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳由常 | zh_TW |
| dc.contributor.coadvisor | Yu-Chang Chen | en |
| dc.contributor.oralexamcommittee | 謝志昇;謝吉隆 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Sheng Hsieh;Ji-Lung Hsieh | en |
| dc.subject.keyword | 效用函數,推薦系統,電子商務,馬可夫鏈,蒙地卡羅, | zh_TW |
| dc.subject.keyword | Utility Function,Recommendation System,E-Commerce,Markov Chain,Monte Carlo, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202303082 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 經濟學系 | - |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 96.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
