請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘 | zh_TW |
| dc.contributor.advisor | Da-Ming Wang | en |
| dc.contributor.author | 詹冠瑩 | zh_TW |
| dc.contributor.author | Kuan-Ying Chan | en |
| dc.date.accessioned | 2023-08-16T16:24:29Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Dordrecht, 1991.
[2] Baker, R.W. Membrane technology and applications; John Wiley & Sons, 2012. [3] McNaught, A.D.; Wilkinson, A. Compendium of chemical terminology; Blackwell Science Oxford, 1997. [4] Pileggi, V. Investigation of the Performance of an Anaerobic Membrane Bioreactor in the Treatment of Mixed Municipal Sludge Under Ambient, Mesophilic and Thermophilic Operating Conditions; University of Waterloo: Waterloo, Ontario, Canada, 2016. [5] Ismail, A.F.; Ridzuan, N.; Rahman, S.A. Latest development on the membrane formation for gas separation. Songklanakarin J. Sci. Technol. 2002, 24, 1025-1043. [6] Caneba, G.T.; Soong, D.S. Polymer membrane formation through the thermal-inversion process. 1. Experimental study of membrane structure formation. Macromolecules 1985, 18, 2538-2545. [7] Tsai, F.J.; Torkelson, J.M. Microporous poly (methyl methacrylate) membranes: effect of a low-viscosity solvent on the formation mechanism. Macromolecules 1990, 23, 4983-4989. [8] Song, S.W.; Torkelson, J.M. Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation. Macromolecules 1994, 27, 6389-6397. [9] Tang, Y.; Lin, Y.; Ma, W.; Wang, X. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. J. Membr. Sci. 2021, 639, 119759. [10] Wang, D.M.; Wu, T.T.; Lin, F.C.; Hou, J.Y.; Lai, J.Y. A novel method for controlling the surface morphology of polymeric membranes. J. Membr. Sci. 2000, 169, 39-51. [11] Matsuura, T. Synthetic membranes and membrane separation processes; CRC press, 1993. [12] Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1-27. [13] Cheng, L.P.; Lin, D.J.; Shih, C.H.; Dwan, A.H.; Gryte, C.C. PVDF membrane formation by diffusion‐induced phase separation‐morphology prediction based on phase behavior and mass transfer modeling. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2079-2092. [14] Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 1992, 73, 259-275. [15] Young, T.H.; Chen, L.W. Pore formation mechanism of membranes from phase inversion process. Desalination 1995, 103, 233-247. [16] Young, T.H.; Lai, J.Y.; You, W.M.; Cheng, L.P. Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system. J. Membr. Sci. 1997, 128, 55-65. [17] Cheng, L.P.; Young, T.H.; Fang, L.; Gau, J.J. Formation of particulate microporous poly (vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol/dimethylformamide/poly (vinylidene fluoride) system. Polymer 1999, 40, 2395-2403. [18] Stropnik, Č.; Musil, V.; Brumen, M. Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer 2000, 41, 9227-9237. [19] Stropnik, Č.; Kaiser, V. Polymeric membranes preparation by wet phase separation: mechanisms and elementary processes. Desalination 2002, 145, 1-10. [20] Kaiser, V.; Stropnik, C.; Musil, V.; Brumen, M. Morphology of solidified polysulfone structures obtained by wet phase separation. Eur. Polym. J. 2007, 43, 2515-2524. [21] Li, C.L.; Wang, D.M.; Deratani, A.; Quémener, D.; Bouyer, D.; Lai, J.Y. Insight into the preparation of poly (vinylidene fluoride) membranes by vapor-induced phase separation. J. Membr. Sci. 2010, 361, 154-166. [22] Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. J. Appl. Polym. Sci. 1999, 74, 171-178. [23] Park, H.C.; Kim, Y.P.; Kim, H.Y.; Kang, Y.S. Membrane formation by water vapor induced phase inversion. J. Membr. Sci. 1999, 156, 169-178. [24] Ripoche, A.; Menut, P.; Dupuy, C.; Caquineau, H.; Deratani, A. Poly (ether imide) membrane formation by water vapour induced phase inversion; Wiley Online Library: Macromolecular symposia, 2002, 188, 37-48. [25] Caquineau, H.; Menut, P.; Deratani, A.; Dupuy, C. Influence of the relative humidity on film formation by vapor induced phase separation. Polym. Eng. Sci. 2003, 43, 798-808. [26] Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 2003, 37, 573-578. [27] Lee, H.J.; Jung, B.; Kang, Y.S.; Lee, H. Phase separation of polymer casting solution by nonsolvent vapor. J. Membr. Sci. 2004, 245, 103-112. [28] Khare, V.P.; Greenberg, A.R.; Krantz, W.B. Vapor-induced phase separation—Effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling. J. Membr. Sci. 2005, 258, 140-156. [29] Yip, Y.; McHugh, A.J. Modeling and simulation of nonsolvent vapor-induced phase separation. J. Membr. Sci. 2006, 271, 163-176. [30] Sun, H.; Liu, S.; Ge, B.; Xing, L.; Chen, H. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. J. Membr. Sci. 2007, 295, 2-10. [31] Jung, J.T.; Kim, J.F.; Wang, H.H.; Di Nicolo, E.; Drioli, E.; Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250-263. [32] Meringolo, C.; Mastropietro, T.F.; Poerio, T.; Fontananova, E.; De Filpo, G.; Curcio, E.; Di Profio, G. Tailoring PVDF membranes surface topography and hydrophobicity by a sustainable two-steps phase separation process. ACS Sustain. Chem. Eng. 2018, 6, 10069-10077. [33] Stropnik, C.; Germic, L.; Zerjal, B. Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion. J. Appl. Polym. Sci. 1996, 61, 1821-1830. [34] Barth, C.; Goncalves, M.C.; Pires, A.T.N.; Roeder, J.; Wolf, B.A. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J. Membr. Sci. 2000, 169, 287-299. [35] Barton, B.F.; Reeve, J.L.; McHugh, A.J. Observations on the dynamics of nonsolvent‐induced phase inversion. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 569-585. [36] Guenet, J. Thermoreversible gelation of polymers and biopolymers; Academic Press, 1992. [37] Strobl, G. Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog. Polym. Sci. 2006, 31, 398-442. [38] Mandelkern, L. Crystallization of Polymers: Volume 2, Kinetics and Mechanisms; Cambridge University Press, 2004. [39] Ratta, V. Crystallization, morphology, thermal stability and adhesive properties of novel high performance semicrystalline polyimides; Virginia Polytechnic Institute and State University, 1999. [40] Blundell, D.J.; Keller, A.; Kovacs, A.J. A new self‐nucleation phenomenon and its application to the growing of polymer crystals from solution. J. Polym. Sci., Part B: Polym. Lett. 1966, 4, 481-486. [41] Blundell, D.; Keller, A. Nature of self-seeding polyethylene crystal nuclei. J. Macromol. Sci. Phys. 1968, 2, 301-336. [42] Van de Witte, P.; Boorsma, A.; Esselbrugge, H.; Dijkstra, P.J.; Van den Berg, J.W.A.; Feijen, J. Differential scanning calorimetry study of phase transitions in poly (lactide)− chloroform− methanol systems. Macromolecules 1996, 29, 212-219. [43] Laxminarayan, A.; McGuire, K.S.; Kim, S.S.; Lloyd, D.R. Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation. Polymer 1994, 35, 3060-3068. [44] Vitagliano, V.; Sartorio, R.; Scala, S.; Spaduzzi, D. Diffusion in a ternary system and the critical mixing point. J. Solution Chem. 1978, 7, 605-622. [45] Paulsen, F.G.; Shojaie, S.S.; Krantz, W.B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. J. Membr. Sci. 1994, 91, 265-282. [46] Manabe, S.; Kamata, Y.; Iijima, H.; Kamide, K. Some morphological characteristics of porous polymeric membranes prepared by “micro-phase separation method”. Polym. J. 1987, 19, 391-404. [47] Koenhen, D.M.; Bakker, A.; Broens, L.; Van den Berg, J.W.A.; Smolders, C.A. Phase separation phenomena in solutions of poly (2, 6‐dimethyl‐1, 4‐phenylene oxide). IV. Thermodynamic parameters for solutions in a series of homologous solvents: Toluene to hexylbenzene. J. Polym. Sci., Polym. Phys. Ed. 1984, 22, 2145-2157. [48] van de Witte, P.; Dijkstra, P.J.; Van den Berg, J.W.A.; Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1-31. [49] Young, T.H.; Lin, D.J.; Gau, J.J.; Chuang, W.Y.; Cheng, L.P. Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid–liquid phase separation. Polymer 1999, 40, 5011-5021. [50] Lin, D.J.; Chang, C.L.; Lee, C.K.; Cheng, L.P. Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system. Eur. Polym. J. 2006, 42, 356-367. [51] Mulder, M.H.V.; Hendrikman, J.O.; Wijmans, J.G.; Smolders, C.A. A rationale for the preparation of asymmetric pervaporation membranes. J. Appl. Polym. Sci. 1985, 30, 2805-2820. [52] Pusch, W.; Walch, A. Synthetic membranes—preparation, structure, and application. Angew. Chem. Int. Ed. Engl. 1982, 21, 660-685. [53] Prasad, A.; Mandelkern, L. The thermoreversible gelation of syndiotactic polystyrene. Macromolecules 1990, 23, 5041-5043. [54] Cheng, L.P. Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems. Macromolecules 1999, 32, 6668-6674. [55] Wang, X.; Zhang, L.; Sun, D.; An, Q.; Chen, H. Formation mechanism and crystallization of poly (vinylidene fluoride) membrane via immersion precipitation method. Desalination 2009, 236, 170-178. [56] Bulte, A.M.W.; Mulder, M.H.V.; Smolders, C.A.; Strathmann, H. Diffusion induced phase separation with crystallizable nylons. I. Mass transfer processes for nylon 4, 6. J. Membr. Sci. 1996, 121, 37-49. [57] Bulte, A.M.W.; Mulder, M.H.V.; Smolders, C.A.; Strathmann, H. Diffusion induced phase separation with crystallizable nylons. II. Relation to final membrane morphology. J. Membr. Sci. 1996, 121, 51-58. [58] Lovinger, A.J. Poly (vinylidene fluoride). In Developments in crystalline polymers—1; Basset, D.C., Ed.; Applied Science Publishers: London, 1982; 195-273. [59] Laroche, G.; Lafrance, C.P.; Prud'homme, R.E.; Guidoin, R. Identification and quantification of the crystalline structures of poly (vinylidene fluoride) sutures by wide‐angle X‐ray scattering and differential scanning calorimetry. J. Biomed. Mater. Res. A 1998, 39, 184-189. [60] Klinge, U.; Klosterhalfen, B.; Öttinger, A.P.; Junge, K.; Schumpelick, V. PVDF as a new polymer for the construction of surgical meshes. Biomaterials 2002, 23, 3487-3493. [61] Ying, Z.; Jiang, Y.; Du, X.; Xie, G.; Yu, J.; Wang, H. PVDF coated quartz crystal microbalance sensor for DMMP vapor detection. Sensors Actuators B: Chem. 2007, 125, 167-172. [62] Wang, F.; Tanaka, M.; Chonan, S. Development of a PVDF piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring. J. Intell. Mater. Syst. Struct. 2003, 14, 185-190. [63] Jolivalt, C.; Brenon, S.; Caminade, E.; Mougin, C.; Pontié, M. Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J. Membr. Sci. 2000, 180, 103-113. [64] Yan, L.; Li, Y.S.; Xiang, C.B. Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701-7706. [65] Gao, K.; Hu, X.; Dai, C.; Yi, T. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng., B 2006, 131, 100-105. [66] Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. J. Membr. Sci. 2006, 281, 581-586. [67] Gugliuzza, A.; Drioli, E. PVDF and HYFLON AD membranes: Ideal interfaces for contactor applications. J. Membr. Sci. 2007, 300, 51-62. [68] Qin, J.J.; Wai, M.N.; Tao, G.; Kekre, K.A.; Seah, H. Membrane bioreactor study for reclamation of mixed sewage mostly from industrial sources. Sep. Purif. Technol. 2007, 53, 296-300. [69] Wang, K.Y.; Chung, T.-S.; Gryta, M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem. Eng. Sci. 2008, 63, 2587-2594. [70] Rajabzadeh, S.; Teramoto, M.; Al-Marzouqi, M.H.; Kamio, E.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Experimental and theoretical study on propylene absorption by using PVDF hollow fiber membrane contactors with various membrane structures. J. Membr. Sci. 2010, 346, 86-97. [71] Zhang, Q.M.; Bharti, V.; Kavarnos, G. Poly(Vinylidene Fluoride) (PVDF) and its Copolymers. In Encyclopedia of Smart Materials; Schwartz, M., Ed., 2002. [72] Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly (vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94-126. [73] Martins, P.; Lopes, A.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683-706. [74] Hirschinger, J.; Schaefer, D.; Spiess, H.W.; Lovinger, A.J. Chain dynamics in the crystalline α-phase of poly (vinylidene fluoride) by two-dimensional exchange deuteron NMR. Macromolecules 1991, 24, 2428-2433. [75] Lovinger, A.J. Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 1982, 15, 40-44. [76] Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 2002, 210, 315-329. [77] Darestani, M.T.; Coster, H.; Chilcott, T.C.; Fleming, S.; Nagarajan, V.; An, H. Piezoelectric membranes for separation processes: Fabrication and piezoelectric properties. J. Membr. Sci. 2013, 434, 184-192. [78] Zhang, M.; Zhang, A.Q.; Zhu, B.K.; Du, C.H.; Xu, Y.Y. Polymorphism in porous poly (vinylidene fluoride) membranes formed via immersion precipitation process. J. Membr. Sci. 2008, 319, 169-175. [79] Das-Gupta, D.K., Ferroelectric Polymers and Ceramic-Polymer Composites, Trans Tech Publications Ltd, Baech, 1994. [80] Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 2020, 20, 5214. [81] Chen, D.; Pomalaza-Ráez, C. A self-cleaning piezoelectric PVDF membrane system for filtration of kaolin suspension. Sep. Purif. Technol. 2019, 215, 612-618. [82] Sukumaran, S.; Chatbouri, S.; Rouxel, D.; Tisserand, E.; Thiebaud, F.; Ben Zineb, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 2021, 32, 746-780. [83] Bottino, A.; Capannelli, G.; Munari, S.; Turturro, A. Solubility parameters of poly (vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 785-794. [84] Bottino, A.; Camera-Roda, G.; Capannelli, G.; Munari, S. The formation of microporous polyvinylidene difluoride membranes by phase separation. J. Membr. Sci. 1991, 57, 1-20. [85] Young, T.H.; Cheng, L.P.; Lin, D.J.; Fane, L.; Chuang, W.Y. Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 1999, 40, 5315-5323. [86] Lin, D.J.; Chang, C.L.; Chang, C.L.; Chen, T.C.; Cheng, L.P. Fine structure of poly (vinylidene fluoride) membranes prepared by phase inversion from a water/N‐methyl‐2‐pyrollidone/poly (vinylidene fluoride) system. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 830-842. [87] Gatos, K.G.; Minogianni, C.; Galiotis, C. Quantifying crystalline fraction within polymer spherulites. Macromolecules 2007, 4, 786-789. [88] Raimo, M. “Kinematic” analysis of growth and coalescence of spherulites for predictions on spherulitic morphology and on the crystallization mechanism. Prog. Polym. Sci. 2007, 32, 597-622. [89] Wang, D.M.; Venault, A.; Lai, J.Y. Fundamentals of nonsolvent-induced phase separation. In Hollow Fiber Membranes; Chung, T.S., Feng, Y., Eds.; Elsevier, 2021; 13-56. [90] Buonomenna, M.G.; Macchi, P.; Davoli, M.; Drioli, E. Poly (vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur. Polym. J. 2007, 43, 1557-1572. [91] Benz, M.; Euler, W.B.; Gregory, O.J. The role of solution phase water on the deposition of thin films of poly (vinylidene fluoride). Macromolecules 2002, 35, 2682-2688. [92] Lin, D.J.; Chang, H.H.; Chen, T.C.; Lee, Y.C.; Cheng, L.P. Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur. Polym. J. 2006, 42, 1581-1594. [93] Ma, W.; Zhang, J.; Wang, X. Crystallizaion and surface morphology of poly (vinylidene fluoride)/poly (methylmethacrylate) films by solution casting on different substrates. Appl. Surf. Sci. 2008, 254, 2947-2954. [94] Ma, W.; Zhang, J.; Wang, X. Formation of poly (vinylidene fluoride) crystalline phases from tetrahydrofuran/N, N-dimethylformamide mixed solvent. J. Mater. Sci. 2008, 43, 398-401. [95] Zuo, D.Y.; Zhu, B.K.; Cao, J.H.; Xu, Y.Y. Influence of alcohol-based nonsolvents on the formation and morphology of PVDF membranes in phase inversion process. Chin. J. Polym. Sci. 2006, 24, 281-289. [96] Lin, D.J.; Beltsios, K.; Chang, C.L.; Cheng, L.P. Fine structure and formation mechanism of particulate phase‐inversion poly (vinylidene fluoride) membranes. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 1578-1588. [97] Threlfall, T. Crystallisation of polymorphs: thermodynamic insight into the role of solvent. Org. Process Res. Dev. 2000, 4, 384-390. [98] Gregorio Jr, R.; Borges, D.S. Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride). Polymer 2008, 49, 4009-4016. [99] Silva, M.; Sencadas, V.; Botelho, G.; Machado, A.; Rolo, A.G.; Rocha, J.G.; Lanceros-Méndez, S. α-and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Mater. Chem. Phys. 2010, 122, 87-92. [100] Gregorio Jr, R.; Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 859-870. [101] Song, D.; Yang, D.; Feng, Z. Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching. J. Mater. Sci. 1990, 25, 57-64. [102] Kobayashi, M.; Tashiro, K.; Tadokoro, H. Molecular vibrations of three crystal forms of poly (vinylidene fluoride). Macromolecules 1975, 8, 158-171. [103] Chang, H.H.; Chang, L.K.; Yang, C.D.; Lin, D.J.; Cheng, L.P. Effect of solvent on the dipole rotation of poly (vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 2017, 115, 164-175. [104] Salimi, A.; Yousefi, A.A. Conformational changes and phase transformation mechanisms in PVDF solution‐cast films. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 3487-3495. [105] Nishiyama, T.; Sumihara, T.; Sato, E.; Horibe, H. Effect of solvents on the crystal formation of poly (vinylidene fluoride) film prepared by a spin-coating process. Polym. J. 2017, 49, 319-325. [106] Nishiyama, T.; Sumihara, T.; Sasaki, Y.; Sato, E.; Yamato, M.; Horibe, H. Crystalline structure control of poly (vinylidene fluoride) films with the antisolvent addition method. Polym. J. 2016, 48, 1035-1038. [107] Chinaglia, D.L.; Gregorio Jr, R.; Stefanello, J.C.; Pisani Altafim, R.A.; Wirges, W.; Wang, F.; Gerhard, R. Influence of the solvent evaporation rate on the crystalline phases of solution‐cast poly (vinylidene fluoride) films. J. Appl. Polym. Sci. 2010, 116, 785-791. [108] Ma, W.; Zhang, J.; Chen, S.; Wang, X. Crystalline phase formation of poly (vinylidene fluoride) from tetrahydrofuran/N, N‐dimethylformamide mixed solutions. J. Macromol. Sci. Phys. 2008, 47, 434-449. [109] Tao, M.M.; Liu, F.; Ma, B.R.; Xue, L.X. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 2013, 316, 137-145. [110] Haponska, M.; Trojanowska, A.; Nogalska, A.; Jastrzab, R.; Gumi, T.; Tylkowski, B. PVDF membrane morphology—influence of polymer molecular weight and preparation temperature. Polymers 2017, 9, 718. [111] Normant, H. Hexamethylphosphoramide. Angew. Chem. Int. Ed. Engl. 1967, 6, 1046-1067. [112] Lee, C.M.; Kumler, W. The dipole moment and structure of five-and six-membered lactams. J. Am. Chem. Soc. 1961, 83, 4593-4596. [113] Riddick, J.A.; Bunger, W.B. Organic Solvents, 3rd ed.; Wiley-Interscience: New York, 1970. [114] Svirbely, W.J.; Lander, J.J. The Dipole Moments of Diethyl Sulfite, Triethyl Phosphate and Tetraethyl Silicate. J. Am. Chem. Soc. 1948, 70, 4121-4123. [115] Lo, C.C.; Chao, P.M. Replacement of carcinogenic solvent HMPA by DMI in insect sex pheromone synthesis. J. Chem. Ecol. 1990, 16, 3245-3253. [116] Epelle, E.; Otaru, A.; Zubair, Y.; Okolie, J. Improving the viscosity index of used lubricating oil by solvent extraction. Int Res J Eng Technol 2017, 4, 1581-1585. [117] Iloukhani, H.; Khanlarzadeh, K. Densities, viscosities, and refractive indices for binary and ternary mixtures of N, N-dimethylacetamide (1)+ 2-methylbutan-2-ol (2)+ ethyl acetate (3) at 298.15 K for the liquid region and at ambient pressure. J. Chem. Eng. Data 2006, 51, 1226-1231. [118] Lalia, B.S.; Yoshimoto, N.; Egashira, M.; Morita, M. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries. J. Power Sources 2010, 195, 7426-7431. [119] Scholer, R.; Merbach, A. Raman and infrared study of hexamethylphosphoramide complexes of lanthanide perchlorates. Inorg. Chim. Acta 1975, 15, 15-20. [120] Kumar, D.B.K.; Reddy, K.R.; Rao, G.S.; Sandhyasri, P.; Begum, Z.; Rambabu, C. Measurements of some physical properties of binary liquid mixtures (N-methyl-2-pyrrolidone+ an aliphatic ester) at several temperatures and data processing of viscosity and ultrasonic speed. J. Mol. Liq. 2013, 183, 31-44. [121] Verbovy, D.M.; Smagala, T.G.; Brynda, M.A.; Fawcett, W.R. A FTIR study of ion-solvent interactions in N, N-dimethylacetamide. J. Mol. Liq. 2006, 129, 13-17. [122] Ruan, C.; Huang, H.; Rodgers, M. Modeling Metal Cation− Phosphate Interactions in Nucleic Acids in the Gas Phase via Alkali Metal Cation− Triethyl Phosphate Complexes. J. Phys. Chem. A 2007, 111, 13521-13527. [123] Akbari, A.; Hamadanian, M.; Jabbari, V.; Lehi, A.Y.; Bojaran, M. Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes. Desalin. Water Treat. 2012, 46, 96-106. [124] Gregorio Jr, R. Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272-3279. [125] Kochervinskii, V.V. The structure and properties of block poly (vinylidene fluoride) and systems based on it. Russ. Chem. Rev. 1996, 65, 865. [126] Yang, D.; Tornga, S.; Orler, B.; Welch, C. Aging of poly (vinylidene fluoride) hollow fibers in light hydrocarbon environments. J. Membr. Sci. 2012, 409, 302-317. [127] Yeow, M.; Liu, Y.; Li, K. Morphological study of poly (vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004, 92, 1782-1789. [128] Lin, D.J.; Chang, C.L.; Chen, T.C.; Cheng, L.P. Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system. Desalination 2002, 145, 25-29. [129] Venault, A.; Ballad, M.R.B.; Huang, Y.T.; Liu, Y.H.; Kao, C.H.; Chang, Y. Antifouling PVDF membrane prepared by VIPS for microalgae harvesting. Chem. Eng. Sci. 2016, 142, 97-111. [130] Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and applications of the β phase poly (vinylidene fluoride). Polymers 2018, 10, 228. [131] Vasarhelyi, K.; Ronner, J.; Mulder, M.; Smolders, C. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend. Desalination 1987, 61, 211-235. [132] Lin, F.C.; Wang, D.M.; Lai, J.Y. Asymmetric TPX membranes with high gas flux. J. Membr. Sci. 1996, 110, 25-36. [133] Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J 1955, 1, 264-270. [134] Li, C.L. Preparation of poly (vinylidene fluoride)(PVDF) membrane by nonsolvent-induced phase separation and investigation into its formation mechanism; National Taiwan University, 2010. [135] Lin, D.J.; Beltsios, K.; Young, T.H.; Jeng, Y.S.; Cheng, L.P. Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. J. Membr. Sci. 2006, 274, 64-72. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88930 | - |
| dc.description.abstract | 本研究觀察並分析溶劑、溶解溫度、醇類非溶劑對非溶劑誘導式相分離法製備的聚偏二氟乙烯(poly(vinylidene fluoride),PVDF)薄膜的結構和晶型的影響。透過成膜過程中的傅立葉轉換紅外線光譜變化和鑄膜液的流變性質,有助於了解成膜機制。
在溶劑方面,在非溶劑吸入速率低的情況下,鑄膜在液-液相分離之前更容易發生固-液相分離,而將鑄膜暴露於水蒸氣中是降低非溶劑吸入速率的有效方法。當固-液相分離領先液-液相分離,PVDF在液-液相分離之前結晶,則晶核形成了顆粒結構;當液-液相分離先固-液相分離時,PVDF在液-液相分離之後結晶,液-液相分離成為主要的結構形成機制。此外,結果表明,鑄膜中的溶劑移除速率在晶型形成方面發揮關鍵作用。在溶劑移除速率較低的情況下,鑄膜中仍有足夠的溶劑存在,足以影響PVDF的結晶,溶劑極性主導了結晶晶型。高極性的溶劑,如甲基磷醯胺(Hexamethylphosphoramide,HMPA),誘導形成極性β相結晶;而極性較低的溶劑,如磷酸三乙酯(Triethyl phosphate,TEP),則誘導非極性α相結晶。在溶劑移除速率較高的情況下,在成膜過程中,鑄膜液中的溶劑濃度很快變得太低,無法影響晶型的形成。在這種情況下,溶劑極性對晶型的形成幾乎沒有影響,主要的晶型是動力學上更有利的α相。觀察到鑄膜液的黏度對於凝聚槽中溶劑移除速率方面發揮關鍵作用。高溶液黏度阻礙溶劑在溶液中的擴散,從而導致較低的溶劑移除速率,使溶劑極性能夠主導晶型的形成。 製備薄膜時,使用了具有不同偶極矩的溶劑,包括HMPA、N-甲基吡咯烷酮(N-Methyl-2-pyrrolidone,NMP)、N,N-二甲基乙醯胺(N,N-Dimethyl Acetamide,DMAc)和TEP。隨著溶劑偶極矩的增加,薄膜中極性結晶相的含量和水滲透率均一致地增加。結果表明,使用HMPA、NMP或DMAc溶解PVDF時,溶劑的偶極矩越高,鑄膜中的溶劑移除速率越低,因為鑄膜液的黏度較高,使得鑄膜表面的溶劑濃度較高,導致相分離後表面形成更多孔洞,並延長了溶劑主導的結晶過程。由於TEP的極性較低,它誘導非極性結晶並對水的親和力較低,這解釋了使用TEP作為溶劑時,水滲透率和極性結晶含量較低的原因。這些結果顯示了在成膜過程中,溶劑極性及其移除速率如何與薄膜結構在分子尺度(與結晶相關)和奈米尺度(與水滲透率相關)相關並相互影響。 在溶解溫度方面,隨著溶解溫度的增加,鑄膜液中的晶核密度變低,結晶的顆粒結構尺寸會逐漸變大。鑄膜液的黏彈測試顯示,鑄膜液的膠化現象會隨著溶解溫度和溶劑而改變。低溶解溫度和弱溶劑會使得鑄膜容易膠化。膠化會抑制結晶而使得溶劑極性對晶型的影響降低,並傾向於形成動力學上較有利的α相。 在醇類非溶劑方面,醇類非溶劑會影響溶劑與非溶劑之間的質傳交換速率。在成膜過程中,醇類非溶劑的吸入速率低,在發生液-液相分離之前,鑄膜液有更多的時間可以結晶。隨著非溶劑醇類碳數的增加,高分子鏈能有充足的時間進行結晶來完成固-液相分離的結構。當使用高碳醇非溶劑時,溶劑移除速率下降,使得溶劑極性對結晶環境的影響時間較長。 | zh_TW |
| dc.description.abstract | In this study, we observed and analyzed the effects of solvent, dissolution temperature, and alcohol non-solvent on the structure and the crystalline phases of poly(vinylidene fluoride) (PVDF) membranes prepared by nonsolvent-induced phase separation (NIPS) method. By detecting the Fourier transform infrared (FTIR) spectrum changes during the membrane formation process and testing the rheological properties of the casting solution, it helps to understand the membrane formation mechanism.
Regarding the solvent, with low nonsolvent intake rate, the casting film had high tendency to perform solid-liquid (S-L) demixing before liquid-liquid (L-L) demixing, and exposure of casting films to water vapor was an efficient way to lower the nonsolvent intake rate. Due to the dominance of S-L demixing over L-L demixing, PVDF crystallized before L-L demixing and the crystalline nuclei grew into nodular (spherulitic) structure. When L-L demixing precedes S-L demixing, PVDF crystallizes after L-L demixing, which was the main mechanism for structure formation. Furthermore, the results indicate that the solvent removal rate from casting solutions played a crucial role in determining the crystalline phases. With a low solvent removal rate, enough solvent remained in the casting solution to influence PVDF crystallization, and the solvent polarity governed the formation of crystalline phases. A solvent with high polarity, such as hexamethyl phosphoramide (HMPA), induced the formation of polar β-phase crystals and a solvent with lower polarity, like triethyl phosphate (TEP), induced nonpolar α-phase crystals. With a high solvent removal rate, the solvent concentration in the casting solution quickly became too low to influence the formation of crystalline phases during the membrane formation. In this case, the solvent polarity had little effect on the formation of crystalline phases and the dominant crystalline phase was the kinetically favorable α-phase. It was also observed that the viscosity of casting solutions played a critical role in determining the solvent removal rate in coagulation bath. High solution viscosity hindered solvent diffusion in the solution, leading to a low solvent removal rate, allowing the solvent polarity to dominate the formation of crystalline phases. Solvents with different dipole moments, including HMPA, N-Methyl-2-pyrrolidone (NMP), N,N-Dimethyl Acetamide (DMAc), and TEP, were used during the membrane preparation. Both the fraction of polar crystalline phase and the water permeability of the prepared membrane consistently increased with an increasing solvent dipole moment. The results indicate that, with HMPA, NMP or DMAc being used to dissolve PVDF, a solvent with a higher dipole moment resulted in a lower solvent removal rate from the cast film due to the higher viscosity of the casting solution. The lower solvent removal rate allowed a higher solvent concentration on the surface of the cast film, leading to a more porous surface and longer solvent-governed crystallization. Because of its low polarity, TEP induced non-polar crystals and had a low affinity for water, accounting for the low water permeability and the low fraction of polar crystals with TEP as the solvent. The results provide insight into how the membrane structure on a molecular scale (related to the crystalline phase) and nanoscale (related to water permeability) was related to and influenced by solvent polarity and its removal rate during membrane formation. Regarding the dissolution temperature, as the temperature increased, the nuclei density in the casting solutions decreased, and the nodule particle size of the crystalline structure gradually increased. Rheological tests of the casting solution demonstrated that gelation phenomena in the casting solution changed with the dissolution temperature and the solvent. A lower dissolution temperature and a weaker solvent made the casting solution more prone to gelation. Gelation would inhibit crystallization and reduced the influence of solvent polarity on crystalline phases, promoting the formation of the kinetically favorable α-phase. Regarding the alcohol nonsolvent, they affected the mass transfer rate between the solvent and nonsolvent in the casting solution. During the membrane formation, alcohol nonsolvent with lower intake rates provided more time for the casting solution to crystallize before the liquid-liquid demixing occurred. With long-chain alcohol nonsolvent, the polymer chains have sufficient time for crystallization to complete the structure of the solid-liquid demixing. With long-chain alcohols nonsolvent, the solvent removal rate decreased, prolonging the time for the solvent polarity to affect the crystalline environment of the casting film. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:24:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:24:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 xi 圖目錄 xiv 表目錄 xx 第一章 緒論 1 1-1. 薄膜應用 1 1-2. 薄膜簡介 3 1-3. 以相分離法製備高分子薄膜 6 1-3-1. 熱誘導式相分離法 7 1-3-2. 溶劑揮發法 7 1-3-3. 非溶劑誘導式相分離法 8 1-3-4. 蒸氣誘導式相分離法 9 1-4. 非溶劑誘導式相分離法的主要步驟 10 1-5. 非溶劑誘導式相分離成膜理論 13 1-5-1. 熱力學 13 1-5-2. 動力學 16 1-6. 半結晶性高分子 17 1-6-1. 結晶理論 17 1-6-2. 成膜理論 20 1-7. 聚偏二氟乙烯(PVDF)簡介 23 1-8. 文獻回顧 28 第二章 實驗材料與方法 33 2-1. 實驗材料 33 2-2. 實驗儀器 35 2-3. 實驗方法 36 2-3-1. 鑄膜液配製 36 2-3-2. 高分子溶液流變性質量測 37 2-3-3. 薄膜之製備 37 2-3-4. 薄膜結構分析-掃描式電子顯微鏡(SEM) 41 2-3-5. 結晶度測定-微差掃描熱差分析儀(DSC) 41 2-3-6. 結晶型態測定-XRD、FTIR 42 2-3-7. 成膜過程中薄膜之FTIR分析 44 2-3-8. 吸水秤重實驗 46 2-3-9. 薄膜透過率與截留率的量測 46 2-3-10. 薄膜孔隙度的量測 47 第三章 溶劑極性對成膜過程的影響 49 3-1. 固-液相分離和液-液相分離的競爭對於膜結構的影響 49 3-2. 固-液相分離主導時的晶型 57 3-3. 液-液相分離主導時的晶型 63 3-4. 溶劑和非溶劑質傳交換速率的影響 69 3-5. 黏度的影響-黏度限制(Viscous Hindrance) 76 3-6. 溶劑偶極矩對NIPS製備的PVDF膜性質與性能的影響 79 3-6-1. 對晶型的影響 79 3-6-2. 對水滲透率(water permeability)的影響 87 3-6-3. 溶劑移除速率與溶劑偶極矩的關係之相關機制 89 第四章 溶解溫度對成膜過程的影響 91 4-1. 溶解溫度(晶核密度)對膜結構的影響 91 4-2. 膠化抑制結晶對晶型的影響 101 第五章 非溶劑對成膜過程的影響 111 5-1. 醇類非溶劑對相分離競爭的影響 111 5-2. 醇類非溶劑對質傳交換速率的影響 114 第六章 結論與未來展望 121 6-1. 結論 121 6-2. 未來展望 123 參考文獻 125 附錄1 縮寫與符號對照表 139 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 質傳速率 | zh_TW |
| dc.subject | 非溶劑誘導式相分離法 | zh_TW |
| dc.subject | 聚偏二氟乙烯薄膜 | zh_TW |
| dc.subject | 結晶 | zh_TW |
| dc.subject | 晶型 | zh_TW |
| dc.subject | poly(vinylidene fluoride) membranes | en |
| dc.subject | mass transfer rate | en |
| dc.subject | crystalline phases | en |
| dc.subject | crystallization | en |
| dc.subject | nonsolvent-induced phase separation | en |
| dc.title | 以非溶劑誘導式相分離法製備聚偏二氟乙烯薄膜及利用傅立葉轉換紅外線光譜儀分析其成膜機制之探討 | zh_TW |
| dc.title | Preparation of poly(vinylidene fluoride) (PVDF) membrane by nonsolvent-induced phase separation and investigation into its formation mechanism by FTIR | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李佳玲;戴子安;謝之真;賴君義;李魁然;洪維松 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ling Li;Chi-An Dai;Chih-Chen Hsieh;Juin-Yih Lai;Kueir-Rarn Lee;Wei-Song Hung | en |
| dc.subject.keyword | 非溶劑誘導式相分離法,聚偏二氟乙烯薄膜,結晶,晶型,質傳速率, | zh_TW |
| dc.subject.keyword | nonsolvent-induced phase separation,poly(vinylidene fluoride) membranes,crystallization,crystalline phases,mass transfer rate, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU202302906 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
