請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴勇成 | zh_TW |
| dc.contributor.advisor | Yung-Cheng Lai | en |
| dc.contributor.author | 鍾育儒 | zh_TW |
| dc.contributor.author | Yu-Ju Chung | en |
| dc.date.accessioned | 2023-08-16T16:21:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Astashkov, N. P., Olentsevich, V. A., Akhmetshin, A. R., Suslov, K. V., Shtayger, M. G., & Karlina, A. I. (2021). Increase of the throughput and processing capacity of the railway line mountain pass section by strengthening the devices of the system of traction power supply. In IOP Conference Series: Materials Science and Engineering (Vol. 1111, No. 1, p. 012005). IOP Publishing.
Bi, M., & He, S. (2019). Express delivery with high-speed railway: Definitely feasible or just a publicity stunt. Transportation Research Part A: Policy and Practice, 120, 165-187. Burdett, R. L.; Kozan, E. (2006). Techniques for absolute capacity determination in railways, Transportation Research Part B: Methodological 40(8): 616–632. Dessouky, M. M., & Leachman, R. C. (1995). A simulation modeling methodology for analyzing large complex rail networks. Simulation, 65(2), 131-142. Dingler, M. H.; Lai, Y. C.; Barkan, C. P. L. (2009). Impact of train type heterogeneity on single-track railway capacity, Transportation Research Record 2117: 41–49. Florio, L. and Mussone, L. (1998). An Analytical Model for the Simultaneous Calculation of Capacity of Lines, Junctions and Station Tracks. Computers in Railways VI, 543-552. Gibson, S., Cooper, G., & Ball, B. (2002). Developments in transport policy: The evolution of capacity charges on the UK rail network. Journal of Transport Economics and Policy (JTEP), 36(2), 341-354. Hu, S., & Li, H. (2011). A urban rail transport network carrying capacity calculation method based on the logit model. In Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE)(pp. 191-194). IEEE. Hu, S. R., & Huang, S. S. (2014). Effects of vertical alignment on rail line capacity loss for HSR operation. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 2062-2067). IEEE. Jiang, Z., Tan, Y., Wang, F., & Bu, L. (2015). Turnback capacity assessment and delay management at a rail transit terminal with two-tail tracks. Mathematical Problems in Engineering. Johansson, I., & Weik, N. (2021). Strategic assessment of railway station capacity–Further development of a UIC 406-based approach considering timetable uncertainty. In The 9th International Conference on Railway Operations Modelling and Analysis (ICROMA), RailBeijing 2021, Beijing, China, 3-7 November 2021. Jong, J. C. (2004). Investigation on Methods for Rail Capacity Analysis. Proceedings of the 19th Annual Conference for Chinese Institute of Transportation (VII), 1939-1963. Jong, J. C., & Chang, S. (2005). Algorithms for generating train speed profiles. Journal of the eastern ASIA society for transportation studies, 6, 356-371. Jovanović, P., Pavlović, N., Belošević, I., & Milinković, S. (2020). Graph coloring-based approach for railway station design analysis and capacity determination. European Journal of Operational Research, 287(1), 348-360. Kim, K. M., Oh, S. M., Ko, S. J., & Park, B. H. (2020). New Headway-Based Analytical Capacity Model Considering Heterogeneous Train Traffic. Journal of Transportation Engineering, Part A: Systems, 146(12). KFH Group. (2013). Transit Capacity and Quality of Service Manual. Krueger, H. (1999). Parametric Modeling in Rail Capacity Plannin. Proceedings of the 1999 Winter Simulation Conference, 1194-1200. Landex, A. (2008). Methods to estimate railway capacity and passenger delays. Technical University of Denmark Ph.D. thesis. Landex, A., & Jensen, L. W. (2013). Measures for track complexity and robustness of operation at stations. Journal of Rail Transport Planning & Management, 3, 22–35. Lindahl M. (2001). Track geometry for high-speed railways, Stockholm: Royal Institute of Technology Railway Technology. Lindner, T. (2011). Applicability of the analytical UIC Code 406 compression method for evaluating line and station capacity. Journal of Rail Transport Planning & Management, 1(1), 49-57. Lindfeldt, A. (2015). Railway capacity analysis: Methods for simulation and evaluation of timetables, delays and infrastructure(Doctoral dissertation, KTH Royal Institute of Technology). Liu, M. (2021). Analysis and Calculation of the Turnback Capacity of Rail Transit Station. In International Conference on Electrical and Information Technologies for Rail Transportation (pp. 535-544). Singapore. Lu, Q., Dessouky, M., & Leachman, R. C. (2004). Modeling train movements through complex rail networks. ACM Transactions on Modeling and Computer Simulation (TOMACS), 14(1), 48-75. Malavasi, G., Molková, T., Ricci, S., & Rotoli, F. (2014). A synthetic approach to the evaluation of the carrying capacity of complex railway nodes. Journal of Rail Transport Planning & Management, 4(1-2), 28-42. Miglani, D., Belur, M. N., & Rangaraj, N. (2017). Railway junction simulation and analysis for mixed rail traffic. In Proceedings of the Symposium on Advanced Train Control and Safety Systems for Indian Railways (A TCSSIR) (pp. 26-27). Pascariu, B., Coviello, N., & D’Ariano, A. (2021). Railway freight node capacity evaluation: A timetable-saturation approach and its application to the Novara freight terminal. Transportation Research Procedia, 52, 155-162. Pouryousef, H., Lautala, P., & Watkins, D. (2016). Development of hybrid optimization of train schedules model for N-track rail corridors. Transportation Research Part C: Emerging Technologies, 67, 169-192. Sameni, M. K., Dingler, M., Preston, J. M., & Barkan, C. P. (2011). Profit-generating capacity for a freight railroad. In TRB 90th Annual Meeting, TRB, Washington, DC. UIC. (2004). Leaflet 406: Capacity. Paris, France. UIC. (2013). Leaflet 406: Capacity. Paris, France. Vieira, A. P., Christofoletti, L. M., & Vilela, P. R. (2018). Analyzing Railway Capacity Using a Planning Tool. In ASME/IEEE Joint Rail Conference (Vol. 50978, p. V001T04A004). American Society of Mechanical Engineers. Weika, N., Warg, J., Johansson, I., Bohlin, M.,and Nießen, N. (2020). Extending UIC 406-based capacity analysis–New approaches for railway nodes and network effects. Journal of Rail Transport Planning & Management, Vol. 15, 100-199. Yaghini, M., Nikoo, N., & Ahadi, H. R. (2014). An integer programming model for analysing impacts of different train types on railway line capacity. Transport, 29(1), 28-35. Yuan, J., & Hansen, I. (2004). Analysis of scheduled and real capacity utilization at a major Dutch railway station. WIT Transactions on The Built Environment, 74, 593–602. 交通部運輸研究所. (2020). 2019年臺灣鐵道容量手冊. 交通部運輸研究所. (2022). 鐵路系統供需診斷模式軟體之維護與擴充及策略分析(1/2) 陳佑昇. (2022). 以路徑組合為基礎之車站容量模式研發. 國立臺灣大學土木工程學研究所碩士論文. 陳敬恆. (2019). 考量C型路權路段之輕軌容量模式研發. 國立臺灣大學土木工程學研究所碩士論文. 葉志恆. (2021). 多車道C型路權之輕軌容量計算架構研發. 國立臺灣大學土木工程學研究所碩士論文. 蕭韋柏. (2016). 單複線混合連續路段容量分析模式研發. 國立臺灣大學土木工程學研究所碩士論文. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88919 | - |
| dc.description.abstract | 中間站和端末折返站是鐵路路網中常見的兩種車站類型,由於列車之間進出車站時常有路線上之衝突,因此車站通常成為鐵路路網中之容量瓶頸。然而,現有的車站容量研究往往僅考慮車站本身,忽略了列車在路段上運行的影響。本研究分別以中間站和端末折返站作為空間參考點,同時考慮列車於路段上運轉之行為,提出模擬模式來評估車站容量。本研究首先分析了連續兩列車間應有的最小時隔,並將其作為兩個模式的輸入值。模式根據運行條件和最小時隔生成模擬列車,並利用衝突檢查模組調整列車進出順序,最後根據模擬結果計算容量。此模型實際應用於一個高速鐵路系統上,展示其在評估鐵路車站容量的能力。最後,本研究進一步探討影響容量的關鍵因素,對其進行分析與討論。 | zh_TW |
| dc.description.abstract | Intermediate stations and terminal turn-back stations are two common types of stations in railway network. Due to conflicts in train routes when entering and exiting stations, these stations often become capacity bottlenecks in the railway network. However, existing studies on station capacity often focus on the stations themselves, overlooking the impact of train operations on the segments of tracks. In this research, both intermediate stations and terminal turn-back stations are designated as spatial reference points. Simulation models are proposed that take into account train behavior along track segments to evaluate station capacity. This study begins by analyzing the minimum headway required between two consecutive trains, using it as input for the proposed models. The simulation models generate virtual trains based on operational conditions and the minimum time interval. A conflict inspection module is employed to adjust the sequence of train arrivals and departures. Capacity is then calculated based on the simulation results. The effectiveness of these models is demonstrated by applying them to a high-speed railway system, effectively assessing the capacity of railway stations. Finally, this research delves into a discussion of key factors influencing capacity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:21:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:21:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv LIST OF FIGURES vii LIST OF TABLES x CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Research objective 2 1.3 Contribution Summary 3 1.4 Thesis Organization 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Capacity Analysis Metrics 6 2.1.1 Throughput 7 2.1.2 Level of service 8 2.1.3 Asset utilization 9 2.1.4 Discussion 10 2.2 Spatial reference points 11 2.2.1 Stations 11 2.2.2 Sections 13 2.2.3 Junctions & complication nodes 14 2.2.4 Discussions 16 2.3 Summary of Literature Review 17 CHAPTER 3 THE CAPACITY MODEL FOR INTERMEDIATE STATION 18 3.1 The Basic Concept and Model Assumption 19 3.2 Types of Headway and Train Time-Space Diagram for Intermediate Station 23 3.3 Intermediate Station Model Computational Process 43 3.3.1 Phase 1: Import Data and Simulation Settings 44 3.3.2 Phase 2: Generate Simulation Trains 45 3.3.3 Phase 3: Conflict Inspection Module (CIM) 45 3.3.4 Phase 4: Calculate Final Result 48 CHAPTER 4 THE CAPACITY MODEL FOR TERMINAL TURN-BACK STATION 49 4.1 The Basic Concept and Model Assumption 50 4.2 Types of Headway and Train Time-Space Diagram for Terminal Turn-back Station 55 4.3 Terminal Turn-back Station Model Computational Process 74 4.3.1 Phase 1: Import Data and Simulation Settings 76 4.3.2 Phase 2: Generate Simulation Trains 76 4.3.3 Phase 3: Conflict Inspection Module (CIM) 79 4.3.4 Phase 4: Calculate Final result 89 CHAPTER 5 CASE STUDY 90 5.1 Model Application 90 5.1.1 Intermediate station: THSR Taichung station 91 5.1.2 Terminal Turn-back station: THSR Zuoying station 101 5.2 Model Validation 110 5.3 Scenario Analysis 111 5.3.1 Influence by the Headway of Preceding and Subsequent Stations 112 5.3.2 Influence on Different Stopping Patterns 113 5.3.3 Influence on Dwell Time at Terminal Turn-back Station 115 CHAPTER 6 CONCLUSION 118 6.1 Conclusion 119 6.2 Future Work 120 REFERENCE 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 高鐵 | zh_TW |
| dc.subject | 列車路段行為 | zh_TW |
| dc.subject | 車站容量 | zh_TW |
| dc.subject | 中間站 | zh_TW |
| dc.subject | 端末折返站 | zh_TW |
| dc.subject | Station Capacity | en |
| dc.subject | Section Motion of Trains | en |
| dc.subject | Intermediate Station | en |
| dc.subject | High Speed Rail | en |
| dc.subject | Terminal Turn-back Station | en |
| dc.title | 考量列車路段運轉行為之車站容量模式研發 | zh_TW |
| dc.title | Development of Railway Station Capacity Model considering Section Operation Behavior | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃笙玹;鍾志成 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Hsuan Huang;Jyh-Cherng Jong | en |
| dc.subject.keyword | 高鐵,車站容量,列車路段行為,中間站,端末折返站, | zh_TW |
| dc.subject.keyword | High Speed Rail,Station Capacity,Section Motion of Trains,Intermediate Station,Terminal Turn-back Station, | en |
| dc.relation.page | 125 | - |
| dc.identifier.doi | 10.6342/NTU202303708 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
