請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88887完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭憶中 | zh_TW |
| dc.contributor.advisor | I-Chung Cheng | en |
| dc.contributor.author | 曾王佑 | zh_TW |
| dc.contributor.author | Wang-You Zeng | en |
| dc.date.accessioned | 2023-08-16T16:12:43Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] H.-J. Jin, J. Weissmüller, D. Farkas, Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts, Mrs Bulletin, 43 (2018) 35-42.
[2] J. Erlebacher, R. Seshadri, Hard materials with tunable porosity, Mrs Bulletin, 34 (2009) 561-568. [3] I.-C. Cheng, A.M. Hodge, Strength scale behavior of nanoporous Ag, Pd and Cu foams, Scripta Materialia, 69 (2013) 295-298. [4] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochimica Acta, 39 (1994) 1833-1839. [5] A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, Electrochemical CO2 reduction: a classification problem, ChemPhysChem, 18 (2017) 3266-3273. [6] K.-H. Chen, M.-J. Pan, Z. Jargalsaikhan, T.-O. Ishdorj, F.-G. Tseng, Development of surface-enhanced Raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer, Biosensors, 10 (2020) 163. [7] B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future, Materials today, 15 (2012) 16-25. [8] A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J.R. Krenn, A. Hohenau, Near-field and SERS enhancement from rough plasmonic nanoparticles, Physical Review B, 89 (2014) 165409. [9] Y. Zhao, X. Liu, D.Y. Lei, Y. Chai, Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain, Nanoscale, 6 (2014) 1311-1317. [10] H. Jeon, N.-R. Kang, E.-J. Gwak, J.-i. Jang, H.N. Han, J.Y. Hwang, S. Lee, J.-Y. Kim, Self-similarity in the structure of coarsened nanoporous gold, Scripta Materialia, 137 (2017) 46-49. [11] L.Y. Chen, J.S. Yu, T. Fujita, M.W. Chen, Nanoporous copper with tunable nanoporosity for SERS applications, Advanced Functional Materials, 19 (2009) 1221-1226. [12] E. Alfonso, J. Olaya, G.I. Cubillos, Thin Film Growth Through Sputtering Technique and Its Applications, in, 2012. [13] Y. Sun, K.P. Kucera, S.A. Burger, T.J. Balk, Microstructure, stability and thermomechanical behavior of crack-free thin films of nanoporous gold, Scripta Materialia, 58 (2008) 1018-1021. [14] Y.-Z. Lee, W.-Y. Zeng, I.-C. Cheng, Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying, Thin Solid Films, 699 (2020) 137913. [15] Z. Hu, P. Wang, E. Fu, X. Wang, X. Yan, P. Xu, Z. Wu, Y. Zhao, Y. Liang, Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying, Journal of Alloys and Compounds, 754 (2018) 26-31. [16] G. Masing, Zur Theorie der Resistenzgrenzen in Mischkristallen, Zeitschrift für anorganische und allgemeine Chemie, 118 (1921) 293-308. [17] A. Forty, Corrosion micromorphology of noble metal alloys and depletion gilding, Nature, 282 (1979) 597-598. [18] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410 (2001) 450-453. [19] J. Erlebacher, An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior, Journal of the Electrochemical Society, 151 (2004) C614. [20] Y.-R. Su, T.-H. Wu, I.C. Cheng, Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys, Journal of Physics and Chemistry of Solids, 151 (2021) 109915. [21] I.C. Cheng, A.M. Hodge, Morphology, oxidation, and mechanical behavior of nanoporous Cu foams, Advanced engineering materials, 14 (2012) 219-226. [22] Y. Sun, S.A. Burger, T.J. Balk, Controlled ligament coarsening in nanoporous gold by annealing in vacuum versus nitrogen, Philosophical Magazine, 94 (2014) 1001-1011. [23] M. Xi, Y.-L. Li, S.-y. Shang, D.-H. Li, Y.-X. Yin, X.-Y. Dai, Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing, Surface and Coatings Technology, 202 (2008) 6029-6033. [24] F.-H. Kuok, K.-Y. Kan, S. Yu, C.-W. Chen, C.-C. Hsu, I.-C. Cheng, J.-Z. Chen, Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors, Applied Surface Science, 425 (2017) 321-328. [25] C. Choi, S. Kwon, T. Cheng, M. Xu, P. Tieu, C. Lee, J. Cai, H.M. Lee, X. Pan, X. Duan, Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4, Nature catalysis, 3 (2020) 804-812. [26] Z. Xing, L. Hu, D.S. Ripatti, X. Hu, X. Feng, Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment, Nature communications, 12 (2021) 136. [27] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction, Nature Communications, 5 (2014) 3242. [28] K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, Journal of the American Chemical Society, 136 (2014) 14107-14113. [29] F. Pan, Y. Yang, Designing CO 2 reduction electrode materials by morphology and interface engineering, Energy & Environmental Science, 13 (2020) 2275-2309. [30] S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization, Angewandte Chemie, 133 (2021) 20795-20816. [31] H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Selective CO2 reduction on 2D mesoporous Bi nanosheets, Advanced Energy Materials, 8 (2018) 1801536. [32] J.-F. Xie, Y.-X. Huang, W.-W. Li, X.-N. Song, L. Xiong, H.-Q. Yu, Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite, Electrochimica Acta, 139 (2014) 137-144. [33] M.N. Hossain, Z. Liu, J. Wen, A. Chen, Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide, Applied Catalysis B: Environmental, 236 (2018) 483-489. [34] Q. Lu, F. Jiao, Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering, Nano Energy, 29 (2016) 439-456. [35] M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh, P. De Luna, Z. Yu, A.S. Rasouli, P. Brodersen, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature, 581 (2020) 178-183. [36] J. Zhang, C.M. Li, Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chemical Society Reviews, 41 (2012) 7016-7031. [37] Y. Peng, T. Wu, L. Sun, J.M. Nsanzimana, A.C. Fisher, X. Wang, Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution, ACS applied materials & interfaces, 9 (2017) 32782-32789. [38] D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts, ACS Catalysis, 5 (2015) 2814-2821. [39] R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO 2 reduction on Cu 2 O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons, Physical Chemistry Chemical Physics, 16 (2014) 12194-12201. [40] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical physics letters, 26 (1974) 163-166. [41] R. Wang, L. Zhang, S. Zou, H. Zhang, Electrodeposition of Ag nanodendrites SERS substrates for detection of malachite green, Microchemical Journal, 150 (2019) 104127. [42] C. Zhang, B. Man, S. Jiang, C. Yang, M. Liu, C. Chen, S. Xu, H. Qiu, Z. Li, SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure, Applied Surface Science, 347 (2015) 668-672. [43] Y. Jiang, D.-W. Sun, H. Pu, Q. Wei, Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues, Trends in Food Science & Technology, 75 (2018) 10-22. [44] A. Pallaoro, M.R. Hoonejani, G.B. Braun, C.D. Meinhart, M. Moskovits, Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel, Acs Nano, 9 (2015) 4328-4336. [45] P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem., 1 (2008) 601-626. [46] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics, Journal of Physics: Condensed Matter, 14 (2002) R597. [47] S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy, Chemical Society Reviews, 46 (2017) 4042-4076. [48] L. Jensen, C.M. Aikens, G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chemical Society Reviews, 37 (2008) 1061-1073. [49] M.E. Abdelsalam, S. Mahajan, P.N. Bartlett, J.J. Baumberg, A.E. Russell, SERS at structured palladium and platinum surfaces, Journal of the American chemical society, 129 (2007) 7399-7406. [50] X. Zhou, G. Liu, H. Zhang, Y. Li, W. Cai, Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment, Journal of hazardous materials, 368 (2019) 429-435. [51] J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis, Nanoscale, 2 (2010) 2733-2738. [52] M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chemical reviews, 111 (2011) 3669-3712. [53] I. Yoon, T. Kang, W. Choi, J. Kim, Y. Yoo, S.-W. Joo, Q.-H. Park, H. Ihee, B. Kim, Single nanowire on a film as an efficient SERS-active platform, Journal of the American Chemical Society, 131 (2009) 758-762. [54] H. Qiu, Z. Zhang, X. Huang, Y. Qu, Dealloying Ag–Al alloy to prepare nanoporous silver as a substrate for surface‐enhanced raman scattering: effects of structural evolution and surface modification, ChemPhysChem, 12 (2011) 2118-2123. [55] R. Li, X. Liu, H. Wang, Y. Wu, X. Chu, Z. Lu, Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering, Corrosion science, 84 (2014) 159-164. [56] R. Jiang, W. Xu, Y. Wang, S. Yu, Tunable porous silver nanostructures for efficient surface-enhanced Raman scattering detection of trace pesticide residues, New Journal of Chemistry, 42 (2018) 17750-17755. [57] G.F. Nataf, New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy, in, Université Paris-Saclay (ComUE), 2016. [58] Y. Zhao, J. Zhao, Y. Li, D. Ma, S. Hou, L. Li, X. Hao, Z. Wang, Room temperature synthesis of 2D CuO nanoleaves in aqueous solution, Nanotechnology, 22 (2011) 115604. [59] Q. Zhao, G. Ma, C. Zhai, X. Yang, M. Zhang, Facile synthesis of nanosheets-assembled hierarchical copper oxide microspheres and their ethanol gas sensing properties, New Journal of Chemistry, 41 (2017) 15042-15048. [60] S.D. Giri, A. Sarkar, Electrochemical study of bulk and monolayer copper in alkaline solution, Journal of The Electrochemical Society, 163 (2016) H252. [61] G.M. Brisard, J.D. Rudnicki, F. McLarnon, E.J. Cairns, Application of probe beam deflection to study the electrooxidation of copper in alkaline media, Electrochimica Acta, 40 (1995) 859-865. [62] R.P. Putra, H. Horino, I.I. Rzeznicka, An efficient electrocatalyst for oxygen evolution reaction in alkaline solutions derived from a copper chelate polymer via in situ electrochemical transformation, Catalysts, 10 (2020) 233. [63] Y. Cudennec, A. Lecerf, The transformation of Cu (OH) 2 into CuO, revisited, Solid state sciences, 5 (2003) 1471-1474. [64] H. Li, P. Zhang, G. Li, J. Lu, Q. Wu, Y. Gu, Stress measurement for nonstoichiometric ceria films based on Raman spectroscopy, Journal of Alloys and Compounds, 682 (2016) 132-137. [65] M. Mu, S. Osswald, Y. Gogotsi, K.I. Winey, An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer, Nanotechnology, 20 (2009) 335703. [66] F. Yang, X. Zhao, P. Xiao, In situ measurement of stresses and phase compositions of the Zirconia scale during oxidation of Zirconium by Raman spectroscopy, Oxidation of metals, 81 (2014) 331-343. [67] Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S. Ur Rahman, R. De Bold, D. Gibson, Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering, Vacuum, 144 (2017) 217-228. [68] B. Xu, L. Dong, Y. Chen, Influence of CuO loading on dispersion and reduction behavior of CuO/TiO 2 (anatase) system, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 1905-1909. [69] S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature, 529 (2016) 68-71. [70] H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, Journal of the American Chemical Society, 133 (2011) 11854-11857. [71] R. Song, L. Zhang, F. Zhu, W. Li, Z. Fu, B. Chen, M. Chen, H. Zeng, D. Pan, Hierarchical nanoporous copper fabricated by one‐step dealloying toward ultrasensitive surface‐enhanced Raman sensing, Advanced Materials Interfaces, 5 (2018) 1800332. [72] Y. Chen, Y. Huang, T. Cheng, W.A. Goddard, III, Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations, Journal of the American Chemical Society, 141 (2019) 11651-11657. [73] A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts, ACS Catalysis, 6 (2016) 3804-3814. [74] F. Yi, J.B. DeLisio, N. Nguyen, M.R. Zachariah, D.A. LaVan, High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry, Chemical Physics Letters, 689 (2017) 26-29. [75] H.S. Roberts, F.H. Smyth, THE SYSTEM COPPER: CUPRIC OXIDE: OXYGEN, Journal of the American Chemical Society, 43 (1921) 1061-1079. [76] J.J. Lv, M. Jouny, W. Luc, W. Zhu, J.J. Zhu, F. Jiao, A highly porous copper electrocatalyst for carbon dioxide reduction, Advanced Materials, 30 (2018) 1803111. [77] L. Bárdos, H. Baránková, Plasma processes at atmospheric and low pressures, Vacuum, 83 (2008) 522-527. [78] T. Sheridan, J. Goree, Collisional plasma sheath model, Physics of Fluids B: Plasma Physics, 3 (1991) 2796-2804. [79] J.-H. Tsai, I.C. Cheng, C.-C. Hsu, C.-C. Chueh, J.-Z. Chen, Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells, Electrochimica Acta, 293 (2019) 1-7. [80] P. Jawaid, M.U. Rehman, Q.L. Zhao, K. Takeda, K. Ishikawa, M. Hori, T. Shimizu, T. Kondo, Helium‐based cold atmospheric plasma‐induced reactive oxygen species‐mediated apoptotic pathway attenuated by platinum nanoparticles, Journal of Cellular and Molecular Medicine, 20 (2016) 1737-1748. [81] N. De Geyter, R. Morent, C. Leys, L. Gengembre, E. Payen, Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure, Surface and Coatings Technology, 201 (2007) 7066-7075. [82] F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, J. Amouroux, On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals, Surface and Coatings Technology, 142-144 (2001) 437-448. [83] X. Liu, Z. Jiang, J. Li, Z. Zhang, L. Ren, Super-hydrophobic property of nano-sized cupric oxide films, Surface and Coatings Technology, 204 (2010) 3200-3204. [84] F.-H. Kuok, K.-Y. Kan, I.-S. Yu, C.-W. Chen, C.-C. Hsu, I.C. Cheng, J.-Z. Chen, Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors, Applied Surface Science, 425 (2017) 321-328. [85] Q. Wang, Z.-Y. Zhou, Y.-J. Lai, Y. You, J.-G. Liu, X.-L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian, S.-G. Sun, Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing, Journal of the American Chemical Society, 136 (2014) 10882-10885. [86] M. Qiao, M.M. Titirici, Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction, Chemistry–A European Journal, 24 (2018) 18374-18384. [87] I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, J.-B. Baek, Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction, Journal of the American Chemical Society, 135 (2013) 1386-1393. [88] F. Tang, W. Cheng, Y. Huang, H. Su, T. Yao, Q. Liu, J. Liu, F. Hu, Y. Jiang, Z. Sun, S. Wei, Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation, ACS Applied Materials & Interfaces, 9 (2017) 26867-26873. [89] H.-J. Jin, L. Kurmanaeva, J. Schmauch, H. Rösner, Y. Ivanisenko, J. Weissmüller, Deforming nanoporous metal: Role of lattice coherency, Acta Materialia, 57 (2009) 2665-2672. [90] L. Qian, M. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Applied Physics Letters, 91 (2007). [91] X. Wang, Z. Qi, C. Zhao, W. Wang, Z. Zhang, Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al− Ag alloys, The Journal of Physical Chemistry C, 113 (2009) 13139-13150. [92] W. Lee, H. Koo, J. Sun, J. Noh, K.-S. Kwon, C. Yeom, Y. Choi, K. Chen, A. Javey, G. Cho, A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors, Scientific reports, 5 (2015) 17707. [93] Z.-Q. Tian, B. Ren, D.-Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, in, ACS Publications, 2002, pp. 9463-9483. [94] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study, The Journal of Physical Chemistry C, 111 (2007) 13794-13803. [95] X. Yu, J. Tao, Y. Shen, G. Liang, T. Liu, Y. Zhang, Q.J. Wang, A metal–dielectric–graphene sandwich for surface enhanced Raman spectroscopy, Nanoscale, 6 (2014) 9925-9929. [96] Y. Pang, J. Wang, R. Xiao, S. Wang, SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus, Biosensors and Bioelectronics, 61 (2014) 460-465. [97] S. Chatterjee, C. Griego, J.L. Hart, Y. Li, M.L. Taheri, J. Keith, J.D. Snyder, Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate, ACS Catalysis, 9 (2019) 5290-5301. [98] R.-Q. Yao, Y.-T. Zhou, H. Shi, Q.-H. Zhang, L. Gu, Z. Wen, X.-Y. Lang, Q. Jiang, Nanoporous Palladium–Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction, ACS Energy Letters, 4 (2019) 1379-1386. [99] M. Jouny, W. Luc, F. Jiao, General techno-economic analysis of CO2 electrolysis systems, Industrial & Engineering Chemistry Research, 57 (2018) 2165-2177. [100] J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang, H. Liu, X. Du, Silver/copper interface for relay electroreduction of carbon dioxide to ethylene, ACS applied materials & interfaces, 11 (2019) 2763-2767. [101] T.H. Han, Y.-K. Huang, A.T. Tan, V.P. Dravid, J. Huang, Steam etched porous graphene oxide network for chemical sensing, Journal of the American Chemical Society, 133 (2011) 15264-15267. [102] G.S. Jeong, D.-H. Baek, H.C. Jung, J.H. Song, J.H. Moon, S.W. Hong, I.Y. Kim, S.-H. Lee, Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer, Nature communications, 3 (2012) 977. [103] C. Volkert, E. Lilleodden, D. Kramer, J. Weissmüller, Approaching the theoretical strength in nanoporous Au, Applied Physics Letters, 89 (2006). [104] S. Parida, D. Kramer, C. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Volume change during the formation of nanoporous gold by dealloying, Physical Review Letters, 97 (2006) 035504. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88887 | - |
| dc.description.abstract | 自工業革命起,溫室氣體逐年增加的排放量與隨之影響的劇烈氣候變遷,造成地球生態系統的浩劫之外,亦壓縮著人們生存空間與品質。鑑於此,各國紛紛訂定出相關減碳政策與目標,我國政府亦在2022年發布「2050淨零碳排」以12大政策推動相關產業與研究加速進行,如何解決既有碳排放於大氣中的總含量,同時發展相關零污染之綠色經濟成了發展目標。除了上述環境相關議題之外,近年來新聞報導上層出不窮的食安問題造成人心惶惶,隨著食品加工技術與各式添加物的發展,接觸更複雜、更多來源的食品風險亦隨之提高,預防性的食品檢測成了把關食安的關鍵流程。
如何解決上述兩種重要議題成了本文章的研究重點,當中減碳技術藉由電催化進行二氧化碳轉換成不同化合物或是有機物之反應較其他技術低耗能且有效率,同時還原之產物可進一步投入工業使用,進而發展為環保且安全之綠色循環經濟;另一方面,透過表面增強拉曼技術進行食安檢測與分析,可以快速、有效率且較低成本的進行微量食品添加物的辨識,隨著可攜式拉曼光譜儀的發展,行動檢測食品安全亦不再是夢想。為有效的將二氧化碳進行轉換與提升表面增強拉曼訊號,開發具有高比表面積、表面粗糙、開放式多孔性等特性的材料作為催化用觸媒與光譜基板為首要目標,而本研究開發不同雙金屬系統以合成奈米孔洞金屬薄膜之製程,當中分別透過製程參數的調整與結合不同的表面改質法進行材料優化,同時亦針對上述的電催化二氧化碳還原反應與拉曼檢測食品安全進行測試與分析,以此拓展奈米孔洞金屬薄膜之應用面,並期望解決環境與食安相關問題。 本研究使用真空共濺鍍法與後續的化學去合金法製備出具有奈米孔洞結構之銅薄膜作為電催化反應之觸媒,其中亦藉由改變去合金時間以合成不同形貌與尺寸的奈米孔洞銅薄膜,當中包含支架尺寸為37 nm至98 nm的奈米多孔銅薄膜以及分層的奈米片狀銅薄膜;同時也藉由後退火熱處理改變奈米孔洞尺寸與評估材料耐熱性,經高溫500°C處理之薄膜其支架粗化至63 nm但仍保有雙連續之多孔結構;最後,透過常溫常壓氦氣噴射電漿進行奈米孔洞銅薄膜表面處理以改變其表面特性,成功的改變奈米多孔銅薄膜表面之鍵結組成並提升其整體潤濕性。在電催化二氧化碳還原反應之結果可以得知不同形貌與表面氧化價態皆對於還原產物選擇性有所影響,具有奈米孔洞結構之銅觸媒較平坦的銅箔提供更多的反應位點;因此,可有效地增加其整體反應速率,同時亦提升其有效還原產物之轉換率。而典型奈米多孔結構之銅觸媒具備的隨機表面缺陷更能夠有效地將還原產物單一轉換至甲酸,如氦氣噴射電漿之銅薄膜其甲酸選擇率為32%;另外,經過後退火處理之奈米多孔銅薄膜亦保有奈米多孔結構與適量的氧化亞銅在其表面,其甲酸轉換率則提升為45%。 於表面增強拉曼技術進行食安檢測應用中,所選用之基板為具有奈米孔洞、表面粗糙等特性的奈米多孔銀薄膜,設計不同孔洞分布之奈米多孔銀基板以釐清孔洞尺寸與增強訊號之關係。藉由改變濺鍍時的參數與去合金時間以合成出不同孔洞尺寸之奈米銀薄膜,其中孔洞尺寸分布從51 nm至246 nm,當中去合金90分鐘合成的奈米多孔銀薄膜具有最小的孔洞尺寸為51 nm。於光學檢測中以10-6 M的R6G進行測試,其響應的增強拉曼訊號較純銀薄膜的30 counts/s提升至4041 counts/s,後續也透過時域有限差分法模擬得知具有較小孔洞分布的奈米基板能有較多熱點分佈以增加其表面電場,進而提升表面增強拉曼訊號。最後,透過奈米銀薄膜檢測養殖業禁用之孔雀石綠其最低偵測濃度可達10-5M,增強因子為1.34x105。 本研究藉由真空濺鍍法與化學去合金法成功製備出不同系統之奈米孔洞金屬薄膜,並藉由去合金時間參數的調整了解其孔洞結構演變之過程,此外,結合不同的表面處理(後退火處理、氦氣噴射電漿)以製備出不同特性與形貌之奈米孔洞薄膜。於電催化二氧化碳還原中,調整觸媒之結構與表面特性可有效提升單一還原產物之選擇性;於食品安全檢測中,合成較小奈米孔洞之基板可有效提升其偵測能力。鑒於上述研究成果,展示奈米孔洞金屬薄膜於催化、感測應用中具有其發展性。 | zh_TW |
| dc.description.abstract | Since the Industrial Revolution, greenhouse gas emissions have increased year by year and the ensuing severe climate change has made a serious impact on the world. In addition to the disaster of the global ecosystem, it also compresses the living space and quality of people. In view of this, countries have formulated relevant carbon emission reduction policies and targets. Our government also announced “2050 Net Zero Carbon Emissions” in 2022 to promote the development of related industries and research with 12 major policies. How to solve the existing total carbon emissions in the atmosphere while developing a related zero-pollution green economy has become an important goal. In addition to the above-mentioned environmental issues, food safety issues that have frequently appeared in news in recent years have also caused public panic. With the development of food processing technology and various additives, the risk of exposure to more complex and more food sources has also increased. Preventive food inspection has become a critical process for food safety.
How to solve the above two important problems becomes the research focus of this paper. Among them, carbon reduction technology uses electrocatalysis to convert carbon dioxide (CO2) into different compounds or organics, which consumes less energy and is more efficient than other technologies. At the same time, the reduction products can be further put into industrial use, and then develop into an environmentally safe green circular economy. On the other hand, food safety detection and analysis by surface-enhanced Raman (SERS) technology can quickly, efficiently and economically identify food additives. With the development of portable Raman spectrometers, mobile food safety detection is no longer a dream. To efficiently convert CO2 and promote surface-enhanced Raman signals, the primary goal is to develop materials with high specific surface area, rough surface, open porosity, etc. as catalysts and spectroscopic substrates. In this study, different bimetallic systems were developed to synthesize nanoporous metal films, and films were optimized by adjusting process parameters and combining different surface modifications. At the same time, the above-mentioned electrocatalytic CO2 reduction reaction (CO2RR) and food safety Raman detection were also tested and analyzed to expand the application range of nanoporous metal films. It is expected to solve environmental and food safety related issues. Firstly, different systems and ratios of bimetallic precursor films were prepared by vacuum co-sputtering method. Metal films with nanoporous structures were subsequently synthesized by selectively etching in chemical dealloying process. In the copper-aluminum system, the experiment attempted to change the dealloying time to synthesize nanoporous copper (NPC) films with different shapes and sizes. These films include nanoprous copper films with ligament sizes ranging from 37 nm to 98 nm, and nanosheet copper cluster films. At the same time, post-annealing treatment was also applied to change the nanopores and evaluate the heat resistance of the films. The ligament size of NPC films after 500°C treatment increased to 63nm. But the film still maintained a bicontinuous porous structure. Finally, the surface of NPC film was modified by atmospheric-pressure helium plasma. It successfully changed the bonding composition of the NPC film and further improve the surface wettability. On the other hand, in the silver-aluminum system, nano-silver films with different pore sizes were also fabricated by changing the sputtering parameters and dealloying time. The pore size distribution ranges from 51nm to 246nm. In the electrocatalytic CO2RR, a catalyst with high activity and selectivity is necessary. In this study, NPC films synthesized by different preparations were utilized as reduction catalysis. The experimental results showed that different morphologies and surface oxidation states could affect the reaction rate and selectivity of reduced products. The copper films with nanoporous structure could effectively increase the reaction rate and the conversion rate of the effective reduction products compared with the copper foil;The copper films with typical nanoprous structure could convert the CO2 into formic acid efficiently, and the helium plasma treated copper film had the formic acid faradaic efficiency of 32%. In addition, the NPC film after post-annealing also retained the nanoporous structure and appropriate amount of cuprous oxide, and it formic acid conversion rate increased to 45%. In the application of SERS technology for food safety detection, the nanoporous silver (NPS) films with different nanopores were used as the substrates. Among these films, the nanoporous silver films after 90 minute dealloying process, NPS46_t90 film, had the smallest pore with the size of 51 nm. In the optical inspection, the enhanced Raman intensity of NPS46_t90 film is 4041 counts/s, which is relatively high compared with 30 counts/s for pure silver film. Then, finite-difference time-domain simulations also illustrated nanoprous films with smaller pore size could provide the higher hot-spot area to increase the surface electric field, thereby enhancing the SERS performance. Finally, the limit concentration of malachite green detection via NPS film substrates would be 10-5 M, while the enhancing factor is 1.34 x 105. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:12:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:12:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iv 目錄 vii 圖目錄 xii 表目錄 xix 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 4 第二章、文獻回顧 6 2.1 奈米多孔金屬薄膜製程 6 2.1.1 前驅金屬薄膜製備 6 2.1.2 化學去合金法(Chemical dealloying) 7 2.1.3 後退火處理(Post-annealing) 12 2.1.4 氦氣常溫常壓噴射電漿(Atmospheric-Pressure Helium Plasma-Jet treatment) 13 2.2 二氧化碳還原(Carbon dioxide reduction reaction, CO2RR) 14 2.2.1 催化觸媒材料之選擇 14 2.2.2 奈米多孔銅薄膜製備 16 2.3 表面增強拉曼(SERS) 19 2.3.1 表面增強機制 20 2.3.2 基板材料之選擇 22 第三章、實驗步驟 24 3.1 材料製備 24 3.1.1 銅鋁系統 24 3.1.2 銀鋁系統 30 3.2 材料特性分析 32 3.2.1 形貌特徵與成分分析 33 3.2.2 電化學分析 42 3.2.3 二氧化碳還原反應 (CO2 reduction reaction, CO2RR) 44 第四章、結果與討論I – 奈米多孔銅薄膜於催化反應之分析 45 4.1 前驅銅鋁合金薄膜 45 4.2 改變去合金時間製備之奈米孔洞銅薄膜 48 4.2.1 表面形貌與成分分析 48 4.2.2 材料晶體結構組成分析 (XRD analysis) 51 4.2.3 拉曼光譜分析 53 4.2.4 XPS電子能譜分析 55 4.2.5 電化學特性分析 56 4.2.6 二氧化碳還原產物分析 62 4.2.7 小結 65 4.3 後退火處理之奈米孔洞銅薄膜 66 4.3.1 表面形貌分析 66 4.3.2 材料晶體結構組成分析 (XRD analysis) 67 4.3.3 拉曼光譜分析 68 4.3.4 XPS電子能譜分析 69 4.3.5 電化學特性分析 70 4.3.6 二氧化碳還原產物分析 73 4.3.7 小結 75 4.4 氦氣常溫常壓噴射電漿改質之奈米孔洞銅薄膜 76 4.4.1 表面形貌與成分分析 76 4.4.2 材料晶體結構組成分析 (XRD analysis) 79 4.4.3 XPS電子能譜分析 80 4.4.4 親疏水性分析 82 4.4.4 電化學特性分析 83 4.4.5 二氧化碳還原產物分析 84 4.4.6 電漿效應之穩定性測試 86 4.4.6 小結 89 4.5 總結 90 第五章、結果與討論II – 奈米孔洞銀薄膜於感測應用之分析 92 5.1 前驅銀鋁薄膜製備 92 5.2 奈米多孔銀薄膜製備 94 5.2.1 去合金時間之影響 96 5.2.2 前驅銀鋁薄膜比例之影響 100 5.3 表面增強拉曼分析 (SERS) 102 5.4 誘發熱點(hot spots)和表面粗糙度對SERS增強之影響 105 5.4.1 時域有限差分法(Finite-difference time-domain, FDTD)分析 105 5.4.2 表面粗糙度分析 107 5.5 SERS基板特性分析 109 5.5.1 SERS基板均勻度分析 109 5.5.2 SERS基板再現性分析 110 5.5.3 SERS濃度曲線分析 112 5.6 增強因子計算 (Enhancement Factor, EF) 113 5.7 總結 116 第六章、結論 117 第七章、未來展望 120 7.1 奈米多孔金屬薄膜製程 120 7.2 奈米多孔銅薄膜應用於電催化二氧化碳 121 7.3 奈米多孔銀薄膜應用於SERS檢測食品安全 121 第八章、附錄 122 8.1 Flow cell反應槽於二氧化碳還原反應 122 8.1.1 奈米多孔銅薄膜 122 8.1.2 E-gun蒸鍍合成之銀修飾奈米多孔銅薄膜 126 8.2 E-gun熱蒸鍍製備雙金屬薄膜 130 8.2.1 銅箔雙面鍍鋁與均質化 130 8.2.2 雙金屬熔煉與E-gun製備雙金屬薄膜 133 8.3 蒸氣化學去合金 135 8.4 後退火熱處理於矽基板上的奈米多孔銅薄膜 140 8.5 製備奈米多孔銅薄膜於不同底材之測試 142 參考文獻 146 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 化學去合金法 | zh_TW |
| dc.subject | 表面增強拉曼 | zh_TW |
| dc.subject | 電催化二氧化碳還原反應 | zh_TW |
| dc.subject | 真空共濺鍍法 | zh_TW |
| dc.subject | 奈米孔洞金屬薄膜 | zh_TW |
| dc.subject | surface enhanced Raman scattering | en |
| dc.subject | nanoporous metal films | en |
| dc.subject | vacuum co-sputtering | en |
| dc.subject | electrocatalytic carbon dioxide reduction reaction | en |
| dc.subject | chemical dealloying | en |
| dc.title | 奈米孔洞金屬薄膜合成與表面改質對於其觸媒、感測應用之評估 | zh_TW |
| dc.title | Evaluation of the synthesis and surface modification of nanoporous metal films for catalyst and sensing applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 吳恆良;陳建彰;陳志軒;林鼎晸 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Liang Wu;Jian-Zhang Chen;Chih-Hsuan Chen;Ding-Zheng Lin | en |
| dc.subject.keyword | 奈米孔洞金屬薄膜,真空共濺鍍法,化學去合金法,電催化二氧化碳還原反應,表面增強拉曼, | zh_TW |
| dc.subject.keyword | nanoporous metal films,vacuum co-sputtering,chemical dealloying,electrocatalytic carbon dioxide reduction reaction,surface enhanced Raman scattering, | en |
| dc.relation.page | 157 | - |
| dc.identifier.doi | 10.6342/NTU202303058 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
