Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88882
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author李鎮宇zh_TW
dc.contributor.authorChen-Yu Leeen
dc.date.accessioned2023-08-16T16:11:22Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] Y.-C. Shen and G.-D. Lin, “Scalable quantum computing stabilised by optical tweezers on an ion crystal,” New Journal of Physics, vol. 22, p. 053032, May 2020.
[2] R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, and C. F. Roos, “Electromagnetically-induced-transparency ground-state cooling of long ion strings,” Physical Review A, vol. 93, p. 053401, may 2016.
[3] R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature, vol. 453, pp. 1008–1015, jun 2008.
[4] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science, vol. 339, pp. 1164–1169, mar 2013.
[5] T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit,” Physical Review Letters, vol. 113, p. 220501, nov 2014.
[6] C. Ballance, T. Harty, N. Linke, M. Sepiol, and D. Lucas, “High-fidelity quantum logic gates using trapped-ion hyperfine qubits,” Physical Review Letters, vol. 117, p. 060504, aug 2016.
[7] J. Gaebler, T. Tan, Y. Lin, Y. Wan, R. Bowler, A. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. Wineland, “High-fidelity universal gate set for 9be+ ion qubits,” Physical Review Letters, vol. 117, p. 060505, aug 2016.
[8] M. Um, J. Zhang, D. Lv, Y. Lu, S. An, J.-N. Zhang, H. Nha, M. S. Kim, and K. Kim, “Phonon arithmetic in a trapped ion system,” Nature Communications, vol. 7, apr 2016.
[9] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan, and K. Kim, “Experimental test of the quantum jarzynski equality with a trapped-ion system,” Nature Physics, vol. 11, pp. 193–199, dec 2014.
[10] H. Gan, G. Maslennikov, K.-W. Tseng, C. Nguyen, and D. Matsukevich, “Hybrid quantum computing with conditional beam splitter gate in trapped ion system,” Physical Review Letters, vol. 124, p. 170502, apr 2020.
[11] K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, “A phonon laser,” Nature Physics, vol. 5, pp. 682–686, Sep 2009.
[12] S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T. W. Hänsch, K. Vahala, and T. Udem, “Injection locking of a trapped-ion phonon laser,” Phys. Rev. Lett., vol. 105, p. 013004, Jul 2010.
[13] M. Ip, A. Ransford, A. M. Jayich, X. Long, C. Roman, and W. C. Campbell, “Phonon lasing from optical frequency comb illumination of trapped ions,” Phys. Rev. Lett., vol. 121, p. 043201, Jul 2018.
[14] J. Kabuss, A. Carmele, T. Brandes, and A. Knorr, “Optically driven quantum dots as source of coherent cavity phonons: A proposal for a phonon laser scheme,” Phys. Rev. Lett., vol. 109, p. 054301, Jul 2012.
[15] J. Kabuss, A. Carmele, and A. Knorr, “Threshold behavior and operating regimes of an optically driven phonon laser: Semiclassical theory,” Phys. Rev. B, vol. 88, p. 064305, Aug 2013.
[16] A. Khaetskii, V. N. Golovach, X. Hu, and I. Žutic, “Proposal for a phonon laser ´ utilizing quantum-dot spin states,” Phys. Rev. Lett., vol. 111, p. 186601, Oct 2013.
[17] I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett., vol. 104, p. 083901, Feb 2010.
[18] R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice,” Phys. Rev. Lett., vol. 104, p. 085501, Feb 2010.
[19] I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, “Phonon lasing in an electromechanical resonator,” Phys. Rev. Lett., vol. 110, p. 127202, Mar 2013.
[20] U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, “Mode competition and anomalous cooling in a multimode phonon laser,” Phys. Rev. Lett., vol. 113, p. 030802, Jul 2014.
[21] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT -symmetric phonon laser,” Phys. Rev. Lett., vol. 113, p. 053604, Jul 2014.
[22] J. Zhang, B. Peng, ¸S. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-x. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics, vol. 12, pp. 479–484, Aug 2018.
[23] Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, “Nonreciprocal phonon laser,” Phys. Rev. Applied, vol. 10, p. 064037, Dec 2018.
[24] R. M. Pettit, W. Ge, P. Kumar, D. R. Luntz-Martin, J. T. Schultz, L. P. Neukirch, M. Bhattacharya, and A. N. Vamivakas, “An optical tweezer phonon laser,” Nature Photonics, vol. 13, pp. 402–405, Jun 2019.
[25] J. Sheng, X. Wei, C. Yang, and H. Wu, “Self-organized synchronization of phonon lasers,” Phys. Rev. Lett., vol. 124, p. 053604, Feb 2020.
[26] J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Laser rate-equation description of optomechanical oscillators,” Phys. Rev. Lett., vol. 108, p. 223904, May 2012.
[27] S. Earnshaw, “On the nature of the molecular forces which regulate the constitution of the luminferous ether,” Transactions of the Cambridge Philosophical Society, vol. 7, pp. 97–112, 1842.
[28] W. T. Scott, “Who was earnshaw?,” American Journal of Physics, vol. 27, pp. 418–419, sep 1959.
[29] W. Paul, “Electromagnetic traps for charged and neutral particles,” Reviews of Modern Physics, vol. 62, pp. 531–540, jul 1990.
[30] S. Seidelin, J. Chiaverini, R. Reichle, J. Bollinger, D. Leibfried, J. Britton, J. Wesenberg, R. Blakestad, R. Epstein, D. Hume, W. Itano, J. Jost, C. Langer, R. Ozeri, N. Shiga, and D. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Physical Review Letters, vol. 96, p. 253003, jun 2006.
[31] D. James, “Quantum dynamics of cold trapped ions with application to quantum computation,” Applied Physics B: Lasers and Optics, vol. 66, pp. 181–190, feb 1998.
[32] S.-L. Zhu, C. Monroe, and L.-M. Duan, “Trapped ion quantum computation with transverse phonon modes,” Phys. Rev. Lett., vol. 97, p. 050505, Aug 2006.
[33] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, pp. 156–159, jan 1970.
[34] R. Grimm, M. WeidemÃijller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics, pp. 95–170, Elsevier, 2000.
[35] A. Einstein, “Zur quantentheorie der strahlu10.1038/187493a0ng,” Physikalische Zeitschrift, vol. XVIII, pp. 121–128, 1917.
[36] T. H. MAIMAN, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493–494, aug 1960.
[37] O. Svelto, Principles of Lasers. Springer, 2007.
[38] C. Raman, “A new radiation,” Indian J. Phys., vol. 2, pp. 38710.1088/1464–4266/2/3/201, 1927.
[39] “Correspondence,” Proceedings of the IRE, vol. 50, no. 11, pp. 2365–2383, 1962.
[40] G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated raman scattering from organic liquids,” Physical Review Letters, vol. 9, pp. 455–457, dec 1962.
[41] J. Mompart and R. Corbalán, “Lasing without inversion,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 2, pp. R7–R24, may 2000.
[42] Y. R. Shen and N. Bloembergen, “Theory of stimulated brillouin and raman scattering,” Physical Review, vol. 137, pp. A1787–A1805, mar 1965.
[43] W. E. Lamb, “Theory of an optical maser,” Phys. Rev., vol. 134, pp. A1429–A1450, Jun 1964.
[44] D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King, and D. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” Journal of Research of the National Institute of Standards and Technology, vol. 103, p. 259, may 1998.
[45] J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, “Laser cooling of trapped ions,” Journal of the Optical Society of America B, vol. 20, p. 1003, may 2003.
[46] G. Morigi, J. Eschner, and C. H. Keitel, “Ground state laser cooling using electromagnetically induced transparency,” Physical Review Letters, vol. 85, pp. 4458–4461, nov 2000.
[47] M. Orszag, Quantum Optics. Springer International Publishing, 2016.
[48] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion trap quantum computer,” Nature, vol. 417, pp. 709–711, jun 2002.
[49] R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. H. Wesenberg, M. J. Biercuk, D. Leibfried, and D. J. Wineland, “Near-ground-state transport of trapped-ion qubits through a multidimensional array,” Physical Review A, vol. 84, p. 032314, sep 2011.
[50] D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain, “Design, fabrication and experimental demonstration of junction surface ion traps,” New Journal of Physics, vol. 13, p. 075018, jul 2011.
[51] L.-M. Duan, B. Blinov, D. Moehring, and C. Monroe, “Scalable trapped ion quantum computation with a probabilistic ion-photon mapping,” Quantum Information and Computation, vol. 4, pp. 165–173, may 2004.
[52] L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Reviews of Modern Physics, vol. 82, pp. 1209–1224, apr 2010.
[53] J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature, vol. 404, p. 579, Apr. 2000.
[54] A. K. Ratcliffe, R. L. Taylor, J. J. Hope, and A. R. R. Carvalho, “Scaling trapped ion quantum computers using fast gates and microtraps,” Phys. Rev. Lett., vol. 120, p. 220501, May 2018.
[55] G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, and L.-M. Duan, “Large-scale quantum computation in an anharmonic linear ion trap,” EPL (Europhysics Letters), vol. 86, p. 60004, jun 2009.
[56] J. P. Home, D. Hanneke, J. D. Jost, D. Leibfried, and D. J. Wineland, “Normal modes of trapped ions in the presence of anharmonic trap potentials,” New Journal of Physics, vol. 13, p. 073026, jul 2011.
[57] G. Pagano, P. W. Hess, H. B. Kaplan, W. L. Tan, P. Richerme, P. Becker, A. Kyprianidis, J. Zhang, E. Birckelbaw, M. R. Hernandez, Y. Wu, and C. Monroe, “Cryogenic trapped-ion system for large scale quantum simulation,” Quantum Science and Technology, vol. 4, p. 014004, oct 2018.
[58] J. J. García-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Physical Review Letters, vol. 91, p. 157901, oct 2003.
[59] A. M. Steane, G. Imreh, J. P. Home, and D. Leibfried, “Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions,” New Journal of Physics, vol. 16, p. 053049, may 2014.
[60] C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New Journal of Physics, vol. 17, p. 103025, oct 2015.
[61] J. J. García-Ripoll, P. Zoller, and J. I. Cirac, “Coherent control of trapped ions using off-resonant lasers,” Physical Review A, vol. 71, p. 062309, jun 2005.
[62] S.-L. Zhu, C. Monroe, and L.-M. Duan, “Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams,” Europhysics Letters (EPL), vol. 73, pp. 485–491, feb 2006.
[63] M. Palmero, S. Martínez-Garaot, D. Leibfried, D. J. Wineland, and J. G. Muga, “Fast phase gates with trapped ions,” Physical Review A, vol. 95, p. 022328, feb 2017.
[64] T. Olsacher, L. Postler, P. Schindler, T. Monz, P. Zoller, and L. M. Sieberer, “Scalable and parallel tweezer gates for quantum computing with long ion strings,” PRX Quantum, vol. 1, p. 020316, dec 2020.
[65] J. D. A. Espinoza, M. Mazzanti, K. Fouka, R. X. SchÃijssler, Z. Wu, P. Corboz, R. Gerritsma, and A. Safavi-Naini, “Engineering spin-spin interactions with optical tweezers in trapped ions,” Physical Review A, vol. 104, p. 013302, jul 2021.
[66] Y. H. Teoh, M. Sajjan, Z. Sun, F. Rajabi, and R. Islam, “Manipulating phonons of a trapped-ion system using optical tweezers,” Physical Review A, vol. 104, p. 022420, aug 2021.
[67] L. Bond, L. Lenstra, R. Gerritsma, and A. Safavi-Naini, “Effect of micromotion and local stress in quantum simulations with trapped ions in optical tweezers,” Physical Review A, vol. 106, p. 042612, oct 2022.
[68] M. Mazzanti, R. SchÃijssler, J. A. Espinoza, Z. Wu, R. Gerritsma, and A. Safavi Naini, “Trapped ion quantum computing using optical tweezers and electric fields,” Physical Review Letters, vol. 127, p. 260502, dec 2021.
[69] M. Mazzanti, R. Gerritsma, R. J. C. Spreeuw, and A. Safavi-Naini, “Trapped ion quantum computing using optical tweezers and the magnus effect,” 2023.
[70] S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson, “Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array,” Phys. Rev. Lett., vol. 122, p. 143002, Apr 2019.
[71] C.-Y. Lee, K.-T. Lin, and G.-D. Lin, “Prototype of a phonon laser with trapped ions,” Physical Review Research, vol. 5, p. 023082, may 2023.
[72] S. Jain, J. Alonso, M. Grau, and J. P. Home, “Scalable arrays of micro-penning traps for quantum computing and simulation,” Phys. Rev. X, vol. 10, p. 031027, Aug 2020.
[73] M. S. Pierre Meystre, Elements of Quantum Optics. Springer-Verlag Berlin Heidelberg, 2007.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88882-
dc.description.abstract本研究旨在探討使用光鑷在大型離子晶體中操作聲子自由度的理論研究。我們的方法是利用光鑷選擇性地固定特定離子,創造出阻礙聲波傳播的屏障。這樣一來,我們可以模擬一維聲腔,其中這些屏障之間的一部分離子對有效腔體的局部運動模式做出貢獻。

為了瞭解腔體的特性,我們計算了模態頻譜、損耗率和馬可夫性。根據我們對這些模式施加藍邊帶或紅邊帶躍遷,我們可以將腔體模態激發或阻抑。在激發的情況下,我們觀察到聲子雷射行為,包括雷射閾值的出現、接近泊松分佈的統計特性、相干性、線寬窄化,以及引人入勝的效應,如模式競爭和多穩定性。另一方面,在阻抑的情況下,我們發現某些次都卜勒冷卻(電磁誘發透明冷卻)技術仍適用於局部模式。因此,與不使用光鉗的情況相比,可以更有效且節省成本地冷卻子陣列。

我們提出的系統為研究腔體量子電動力學提供了聲學類比,為聲子媒介的量子操作、通信和計算開創了道路。
zh_TW
dc.description.abstractIn this study, we propose a theoretical investigation into the manipulation of phononic degrees of freedom using optical tweezers in a large ionic crystal. Our approach involves the use of optical tweezers to selectively immobilize specific ions, creating barriers that impede the propagation of acoustic waves. By doing so, we can emulate a one-dimensional acoustic cavity, where a subset of ions between these barriers contributes to the local motional modes of the effective cavity.

To gain insights into the characteristics of the cavity, we calculate the mode spectrum, loss rates, and the Markovianity of the cavity. Depending on whether we apply blue or red sideband transitions to these modes, we can either pump or damp the cavity mode excitations. In the case of pumping, we observe phonon lasing behavior, including the emergence of lasing thresholds, near-Poisson statistics, correlations, line-narrowing, as well as intriguing effects such as mode competition and multi-stability. On the other hand, in the case of damping, we discover that certain sub-Doppler cooling (electromagnetically-induced-transparency cooling) techniques remain applicable to the local modes. Consequently, the sub-array can be cooled more efficiently and economically compared to scenarios without the use of tweezers.

Our proposed system provides an acoustic equivalent for exploring cavity quantum electrodynamics, opening up possibilities for quantum manipulation, communication, and computation mediated by phonons.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:11:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:11:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of thesis approval from the oral defense committee i
Acknowledgment iii
Abstract (Mandarin) v
Abstract (English) vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ion trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Ion traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Phonon laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Mechanism of laser . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Properties of laser . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Electromagnetically-induced-transparency (EIT) cooling . . . . . . . . . 15
1.4.1 Cooling in Lamb-Dicke regime . . . . . . . . . . . . . . . . . . 15
1.4.2 Scattering rates in EIT cooling . . . . . . . . . . . . . . . . . . . 17
1.5 Open quantum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Born-Markov approximation . . . . . . . . . . . . . . . . . . . . 22
1.5.3 Master equation of a damped harmonic oscillator . . . . . . . . . 23
1.6 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Trapped ion arrays with optical tweezers 27
2.1 Advantages of the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Applications of optical tweezers in trapped ion systems . . . . . . . . . . 29
2.3 Quantum simulation with phonons . . . . . . . . . . . . . . . . . . . . . 30
2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Hamiltonian with optical tweezers . . . . . . . . . . . . . . . . . 31
2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Phonon laser 39
3.1 Single-mode phonon lasing . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1 Gain and rate equations . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Phonon number distribution, correlation, and line narrowing . . . 42
3.1.3 Effect of finite size . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Multi-mode phonon lasing . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 EIT cooling with an ion crystal assisted by optical tweezers 55
4.1 Cooling in an ion crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Model of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Effective cooling rate and cooling limit . . . . . . . . . . . . . . . . . . . 59
4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Conclusion and outlook 63
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A Derivation 67
A.1 Dispersion of an ion crystal . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Model for phonon lasing - multimode . . . . . . . . . . . . . . . . . . . 68
Bibliography 72
-
dc.language.isoen-
dc.subject電磁誘發透明冷卻zh_TW
dc.subject囚禁離子zh_TW
dc.subject光學鑷子zh_TW
dc.subject聲子雷射zh_TW
dc.subject模式競爭zh_TW
dc.subjectoptical tweezersen
dc.subjecttrapped ionen
dc.subjectEIT coolingen
dc.subjectmode competitionen
dc.subjectphonon lasersen
dc.title基於囚禁離子系統中的腔體量子電動力學zh_TW
dc.titleCavity QED simulation with a trapped ion systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee張銘顯;管希聖;童世光;王喬萱;任祥華zh_TW
dc.contributor.oralexamcommitteeMing-Shien Chang;Hsi-Sheng Goan;Shih-Kuang Tung;Chiao-Hsuan Wang;Hsiang-Hua Jenen
dc.subject.keyword囚禁離子,光學鑷子,聲子雷射,模式競爭,電磁誘發透明冷卻,zh_TW
dc.subject.keywordtrapped ion,optical tweezers,phonon lasers,mode competition,EIT cooling,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202301896-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved