請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚 | |
dc.contributor.author | Yun-Ting Kao | en |
dc.contributor.author | 高筠婷 | zh_TW |
dc.date.accessioned | 2021-05-20T20:03:20Z | - |
dc.date.available | 2014-08-21 | |
dc.date.available | 2021-05-20T20:03:20Z | - |
dc.date.copyright | 2009-08-21 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-18 | |
dc.identifier.citation | Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58: 347-360
Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322: 93-103 Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67: 1182-1193 Bleeker PM, Assuncao AG, Teiga PM, de Koe T, Verkleij JA (2002) Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci Total Environ 300: 1-13 Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91: 179-194 Borovskii GB, Stupnikova IV, Antipina Al, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2: 5-11 Brouwer KS, van Valen T, Day DA, Lambers H (1986) Hydroxamate-stimulated O2 uptake in roots of Pisum sativum and Zea mays, mediated by a peroxidase : its consequences for respiration measurements. Plant Physiol 82: 236-240 Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci U S A 102: 3459-3464 Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31: 244-257 Colville L, Smirnoff N (2008) Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J Exp Bot 59: 3857-3868 Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109: 203-212 Daurelio LD, Checa SK, Moran Barrio J, Ottado J, Orellano EG (2009) Characterization of Citrus sinensis type 1 mitochondrial alternative oxidase and expression analysis in biotic stress. Biosci Rep doi/10.1042/BSR20080180 Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203-206 Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139: 847-856 del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53: 1255-1272 Escobar C, Hernandez LE, Jimenez A, Creissen G, Ruiz MT, Mullineaux PM (2003) Transient expression of Arabidopsis thaliana ascorbate peroxidase 3 in Nicotiana benthamiana plants infected with recombinant potato virus X. Plant Cell Rep 21: 699-704 Evenson RE (1999) Global and local implications of biotechnology and climate change for future food supplies. Proc Natl Acad Sci U S A 96: 5921-5928 Francia D, Demaria D, Calderini O, Ferraris L, Valentino D, Arcioni S, Tamietti G, Cardinale F (2007) Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protection. Plant Cell Environ 30: 1357-1365 Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33: 691-705 Ganesan V, Thomas G (2001) Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci 160: 1095-1106 Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165: 138-148 Gessler NN, Aver'yanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc) 72: 1091-1109 Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65: 627-644 Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26: 139-145 Groten K, Dutilleul C, van Heerden PD, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH (2006) Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett 580: 1269-1276 Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58: 3273-3283 Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ doi/10.1111/j.1365-3040.2009.01987.x Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiol 114: 275-284 Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K (1999) Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radic Res 31 Suppl: S219-225 Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640 Kelly M, Buchanan-Smith M (1994) Northern Sudan in 1991: food crisis and the international relief response. Disasters 18: 16-34 Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim Ie S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26: 4521-4539 Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283: 34197-34203 Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29: 479-489 Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17: 651-663 Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104: 672-677 Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164: 969-979 Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26: 1909-1917 Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe Interact 20: 697-706 Meerburg BG, Singleton GR, Leirs H (2009) The year of the rat ends- time to fight hunger. Pest Manag Sci 65: 351-352 Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in Poplar. Plant Physiol 150: 924-941 Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144: 1777-1785 Minibayeva F, Kolesnikov O, Chasov A, Beckett RP, Luthje S, Vylegzhanina N, Buck F, Bottger M (2009) Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ 32: 497-508 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410 Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9: 490-498 Moreno DA, Villora G, Ruiz JM, Romero L (2003) Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage. Chemosphere 52: 1031-1040 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681 Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57: 3033-3042 Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48: 535-547 Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71: 2144-2154 Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59: 2267-2276 Panchuk, II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129: 838-853 Panchuk, II, Zentgraf U, Volkov RA (2005) Expression of the APx gene family during leaf senescence of Arabidopsis thaliana. Planta 222: 926-932 Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139: 1291-1303 Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975 Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17: 281-291 Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59: 4133-4143 Remington R, Simms C (2002) Nuts to the fuel crisis! Biologist (London) 49: 96 Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143: 639-649 Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681: 169-179 Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170: 43-52 Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29: 269-281 Schneider K, Garrett L (2009) The end of the era of generosity? Global health amid economic crisis. Philos Ethics Humanit Med 4: 1 Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53: 1351-1365 Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273: 23-27 Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118: 1005-1014 Taylor NL, Millar AH (2007) Oxidative stress and plant mitochondria. Methods Mol Biol 372: 389-403 Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224: 300-314 Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59: 761-770 Thunell S, Andersson D, Harper P, Henrichson A, Floderus Y, Lindh U (1997) Effects of administration of antioxidants in acute intermittent porphyria. Eur J Clin Chem Clin Biochem 35: 427-433 Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Yazdi-Samadi B, Ismail AM, Salekdeh GH (2009) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9: 159-170 Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162: 291-299 Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94: 791-812 Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134: 1100-1112 Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino acids 353: 753-759 Volkov RA, Panchuk, II, Mullineaux PM, Schoffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61: 733-746 Wan C, Li S, Wen L, Kong J, Wang K, Zhu Y (2007) Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Rep 26: 373-382 Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56: 723-731 Wang L, Huang X, Zhou Q (2009) Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol Trace Elem Res 128: 82-93 Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14 Wu SC, Yen GC (2004) Effects of cooking oil fumes on the genotoxicity and oxidative stress in human lung carcinoma (A-549) cells. Toxicol In Vitro 18: 571-580 Xu X, Zhou Y, Wei S, Ren D, Yang M, Bu H, Kang M, Wang J, Feng J (2009) Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophila. Mol Cells 27: 423-428 Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34: 967-971 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8885 | - |
dc.description.abstract | 在植物中Ascorbate peroxidase是一個關鍵的抗氧化酵素,可將細胞中H2O2轉變成水。水稻中共有8個APx基因,其中兩個位於細胞質、兩個位於peroxisome,四個表現在葉綠體中,然而水稻APx基因對環境外在刺激的反應仍未清楚研究。為廣泛了解APx基因表現模式,以即時定量PCR來分析APx基因表現,我們的結果顯示水稻多數的APx基因大量累積在幼苗地上部組織,在重金屬處理可誘導水稻根部APx1與APx3誘導10倍以上表現量,另外幾乎所有的APx基因都被缺水、鹽分及ABA處理誘導而大量在根部及地上部表現。植物荷爾蒙處理顯示除了APx7外,水楊酸顯著的在根部誘導APx基因表現。以次細胞蛋白定位分析OsAPx1及OsAPx2位置,結果顯示OsAPx1與OsAPx2皆在細胞質和細胞核中表現。我們過去的研究顯示,水稻APx8會受鹽分誘導表現,為進一步了解其在鹽分逆境下之扮演的角色,試驗中分析水稻APx8啟動子驅動GUS報導基因之轉殖水稻,結果顯示GUS在葉片、葉鞘、莖部、內外穎、種子胚乳及胚中累積,刻傷及鹽分處理也提高GUS在葉片中的累積。分析APx8基因嵌入突變株osapx8的活性,結果顯示地上部減少40%的APx活性,鹽分處理下也呈現較低的誘導性。在鹽分耐受性測試中,osapx8表現對鹽分敏感之外表型,以上結果顯示OsAPx8是一個在鹽分逆境下具有保護植物功能的重要基因。 | zh_TW |
dc.description.abstract | In plants, ascorbate peroxidase is a key antioxidative enzyme which catalyze the conversion of H2O2 to H2O. In rice, APx gene family is composed of eight genes, including two cytosolic isofoms, two putative peroxisomal isoforms, and four chloroplastic isoforms, and yet their gene expression patterns response to external stimuli remain mostly uncharacterized. To comprehensively understand the specific gene expression patterns of each individual of the APx gene, quantitative real-time PCR was conducted. Our results showed that most transcripts of APx genes are highly accumulated in the shoot tissue. The heavy metal response of APx indicated that more than 10 folds of APx1 and APx3 transcripts were induced by copper in root. Furthermore, almost all APx gene were significantly enhanced by dehydration, salt, and ABA either in root or shoot. Phytohormones treatments revealed that salicyclic acid notably increased the expression of all APx genes, except APx7, in root. Subcellular localization analysis demonstrated that both cytosolic isoform OsAPx1 and OsAPx2 are localized at cytosol and nucleus. Our previous study showed that OsAPx8 is highly induced by salt stress in root. To further understand its roles in salt stress, PAPx8::GUS transgenic rice was generated. PAPx8::GUS transgenic plants showed that GUS accumulated in blade, sheath, stem, lemma, palea, endosperm and embryo. Wounding and salt stress enhanced the accumulation of GUS protein in leaf. Analysis of APx8 knockout mutant, osapx8, showed that APx activity decreased 40% in leaf, while lower inducibility could be observed upon salt treatment. Salt tolerant assay indicated that osapx8 showed a salt sensitive phenotype. All these data let us conclude that OsAPx8 is a crucial gene in protecting rice from salt stress. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:03:20Z (GMT). No. of bitstreams: 1 ntu-98-R96623005-1.pdf: 5907395 bytes, checksum: b216462699a6e03bb887d73f5b0314b1 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 ..............................................................................................I 誌謝 ....................................................................................................................II 目錄 ....................................................................................................................III 附圖附表目錄 .....................................................................................................IV 圖目錄 ................................................................................................................V 表目錄 ................................................................................................................VI 中文摘要 ............................................................................................................VII 英文摘要 ............................................................................................................VIII 縮寫字對照表 .....................................................................................................X 壹、緒論 一、非生物性逆境及氣候變遷造成全球糧食危機 ...........................................1 二、植物遭遇逆境的調節及保護機制 .............................................................2 三、植物面對逆境的調控機制 ........................................................................6 四、Ascorbate peroxidase之研究 .................................................................8 貳、研究目的 ....................................................................................................14 參、材料與方法 一、基因表現分析 .........................................................................................15 二、蛋白質次細胞位置分析 ...........................................................................18 三、OsAPx8啟動子特性分析 ........................................................................21 四、OsAPx8功能性分析 ...............................................................................24 五、補充資料 .................................................................................................27 肆、結果 一、水稻APx基因家族分子特性分析 ............................................................32 二、水稻APx8基因功能性分析 .....................................................................37 伍、討論 一、水稻APx基因家族分子特性分析與基因表現綜合比較 ............................42 二、水稻OsAPx在兩種對重金屬耐受性不同品種之差異性比較 ....................45 三、OsAPx蛋白質於水稻次細胞位置分析討論 ..............................................47 四、PAPx8/GUS轉殖植物組織專一性及逆境誘導性之比較 ..............................47 五、水稻OsAPx8之功能討論 ........................................................................48 陸、引用文獻 .....................................................................................................50 附表1、阿拉伯芥中APx基因調控及功能之研究 ...............................................58 附表2、水稻及大麥中APx基因調控及功能之研究 ...........................................60 附圖1 、水稻APx胺基酸保守性序列示意圖 ....................................................61 圖1、APx基因家族親緣演化分析。........................................................................ 62 圖2、水稻OsAPx1至OsAPx4基因上游2kb序列順式作用元件分析。................ 63 圖3、水稻OsAPx5至OsAPx8基因上游2kb序列順式作用元件分析。................ 64 圖4、APx基因家族在水稻中之組織專一性表現分析。.......................................... 65 圖5、TNG67水稻地上部在鎘、銅、鋅處理下APx家族之基因表現。................. 66 圖6、TNG67水稻根部在鎘、銅、鋅處理下APx家族之基因表現。................... 67 圖7、TN1水稻地上部在鎘、銅、鋅處理下APx家族之基因表現。...................... 68 圖8、TN1水稻根部在鎘、銅、鋅處理下APx家族之基因表現。.......................... 69 圖9、TNG67水稻地上部在缺水、高鹽逆境及ABA處理下APx家族之基因表現。...70 圖10、TNG67水稻根部在缺水、高鹽逆境及ABA處理下APx家族之基因表現。...71 圖11、TNG67水稻地上部在植物荷爾蒙處理下APx家族之基因表現。................72 圖12、TNG67水稻根部在植物荷爾蒙處理下APx家族之基因表現。....................73 圖13、TNG67水稻葉片刻傷處理後APx家族基因表現。....................................... 74 圖14、水稻OsAPx1及OsAPx2次細胞位置分析。................................................ 75 圖15、PAPx8/GUS轉殖水稻組織化學分析。.............................................................76 圖16、PAPx8/GUS轉殖水稻之組織化學分析。........................................................ 77 圖17 、PosAPx8/GUS幼苗鹽份處理下GUS染色。...................................................78 圖18、PAPx8-GUS轉殖水稻在鹽份逆境及刻傷逆境下之組織化學分析。...............79 圖19、成熟葉片在短時間刻傷逆境下之OsAPx8基因表現。.................................80 圖20、osapx8突變株之分析。................................................................................81 圖21、以即時定量聚合酶方式分析水稻8個APx基因於osapx8中之表現量。..82 圖22、osapx8突變株在鹽份逆境處理下APx及CAT活性測試。.......................... 83 圖23、osapx8突變株逆境耐受性測試。................................................................ 84 圖24、oe-osapx8逆境耐受性測試。 ..................................................................85 表1、水稻TNG67及TCN1在重金屬處理下地上部APx基因表現。......................86 表2、TNG67及TCN1在重金屬處理下根部APx基因表現。................................. 87 表3、兩週大TNG67水稻在非生物性逆境下地上部APx基因表現。.................... 88 表4、兩週大TNG67水稻在非生物性逆境下根部APx基因表現。.........................89 表5、兩週大台農67號水稻地上部在植物荷爾蒙處以下APx家族之基因表現。..90 表6、兩週大台農67號水稻根部在植物荷爾蒙處下APx家族之基因表現。........91 表7、論文使用引子列表 .......................................................................................92 | |
dc.language.iso | zh-TW | |
dc.title | 水稻Ascorbate peroxidase基因家族功能分析
1. 水稻Ascorbate peroxidase基因家族之特性及表現 2. 水稻Ascorbate peroxidase 8 (OsAPx8)的功能分析 | zh_TW |
dc.title | Functional studies of rice ascorbate peroxidase gene family
1. Characterization and expression of rice ascorbate peroxidase gene family 2. Functional analysis of the rice ascorbate peroxidase 8 (OsAPx8) | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高景輝,鄭石通,張孟基,葉靖輝 | |
dc.subject.keyword | 非生物性逆境,活性氧族,基因表現,功能分析, | zh_TW |
dc.subject.keyword | ascorbate peroxidase,abiotic stress,reactive oxygen species,gene expression,functional analysis, | en |
dc.relation.page | 93 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 5.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。