請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88858完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖洺漢 | zh_TW |
| dc.contributor.advisor | Ming-Han Liao | en |
| dc.contributor.author | 陳亭瑋 | zh_TW |
| dc.contributor.author | Ting-Wei Chen | en |
| dc.date.accessioned | 2023-08-16T16:04:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-05 | - |
| dc.identifier.citation | G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
A. Kelleher. "Moore’s Law – Now and in the Future." Intel newsroom. https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html#gs.zpeqez. M. T. Bohr, "Logic technology scaling to continue moore's law," in 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), 2018: IEEE, pp. 1-3. J. Jiang, K. Parto, W. Cao, and K. Banerjee, "Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges," IEEE Journal of the Electron Devices Society, vol. 7, pp. 878-887, 2019. A. K. Panigrahi, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Demonstration of sub 150° C Cu-Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of Manganin alloy as an effective surface passivation layer," Materials Letters, vol. 194, pp. 86-89, 2017. P. Shukla, A. K. Coskun, V. F. Pavlidis, and E. Salman, "An overview of thermal challenges and opportunities for monolithic 3D ICs," in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, pp. 439-444. M. Vinet et al., "Monolithic 3D integration: A powerful alternative to classical 2D scaling," in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2014: IEEE, pp. 1-3. M. M. Shulaker, T. F. Wu, M. M. Sabry, H. Wei, H.-S. P. Wong, and S. Mitra, "Monolithic 3D integration: A path from concept to reality," in 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015: IEEE, pp. 1197-1202. A. Vandooren et al., "3-D sequential stacked planar devices featuring low-temperature replacement metal gate junctionless top devices with improved reliability," IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 5165-5171, 2018. P. Batude et al., "3D Sequential Integration: Application-driven technological achievements and guidelines," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 3.1. 1-3.1. 4. B. Rajendran, A. K. Henning, B. Cronquist, and Z. Or-Bach, "Pulsed laser annealing: A scalable and practical technology for monolithic 3D IC," in 2013 IEEE International 3D Systems Integration Conference (3DIC), 2013: IEEE, pp. 1-5. B. Mathieu, C. Fenouillet-Beranger, S. Kerdiles, and J.-C. Barbé, "Thermal simulation of nanosecond laser annealing of 3D sequential VLSI," in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2015: IEEE, pp. 104-107. C. Santos et al., "Thermal performance of CoolCube™ monolithic and TSV-based 3D integration processes," in 2016 IEEE International 3D Systems Integration Conference (3DIC), 2016: IEEE, pp. 1-5. X. Liu, Q. Chen, P. Dixit, R. Chatterjee, R. R. Tummala, and S. K. Sitaraman, "Failure mechanisms and optimum design for electroplated copper through-silicon vias (TSV)," in 2009 59th Electronic components and technology conference, 2009: IEEE, pp. 624-629. K.-N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, vol. 51, no. 3, pp. 517-523, 2011. S. Kang et al., "TSV optimization for BEOL interconnection in logic process," in 2011 IEEE International 3D Systems Integration Conference (3DIC), 2011 IEEE International, 2012: IEEE, pp. 1-4. C. Okoro, J. W. Lau, F. Golshany, K. Hummler, and Y. S. Obeng, "A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability," IEEE Transactions on Electron Devices, vol. 61, no. 1, pp. 15-22, 2013. M. L. Terranova, V. Sessa, and M. Rossi, "The world of carbon nanotubes: an overview of CVD growth methodologies," Chemical Vapor Deposition, vol. 12, no. 6, pp. 315-325, 2006. S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, pp. 56-58, 1991. M. Filchakova. "What are multi walled carbon nanotubes? MWCNT production, properties, and applications." TUBALL. https://tuball.com/articles/multi-walled-carbon-nanotubes. K. Kashyap and R. Patil, "On Young’s modulus of multi-walled carbon nanotubes," Bulletin of Materials Science, vol. 31, no. 2, pp. 185-187, 2008. A. Lekawa‐Raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, "Electrical properties of carbon nanotube based fibers and their future use in electrical wiring," Advanced Functional Materials, vol. 24, no. 24, pp. 3661-3682, 2014. S. Kannan, A. Gupta, B. C. Kim, F. Mohammed, and B. Ahn, "Analysis of carbon nanotube based through silicon vias," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010: IEEE, pp. 51-57. M. Samani, N. Khosravian, G. Chen, M. Shakerzadeh, D. Baillargeat, and B. Tay, "Thermal conductivity of individual multiwalled carbon nanotubes," International Journal of Thermal Sciences, vol. 62, pp. 40-43, 2012. N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan, "Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes," Physical Review B, vol. 66, no. 23, p. 235424, 2002. M. Matsumoto et al., "Control of anisotropic conduction of carbon nanotube sheets and their use as planar-type thermoelectric conversion materials," Science and Technology of Advanced Materials, vol. 22, no. 1, pp. 272-279, 2021. B. Kumanek and D. Janas, "Thermal conductivity of carbon nanotube networks: A review," Journal of materials science, vol. 54, no. 10, pp. 7397-7427, 2019. J. H. Kim, A. Feldman, and D. Novotny, "Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness," Journal of applied physics, vol. 86, no. 7, pp. 3959-3963, 1999. H. M. Roder, R. A. Perkins, A. Laesecke, and C. A. N. de Castro, "Absolute steady-state thermal conductivity measurements by use of a transient hot-wire system," Journal of research of the National Institute of Standards and Technology, vol. 105, no. 2, p. 221, 2000. Y. He, "Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations," Thermochimica acta, vol. 436, no. 1-2, pp. 122-129, 2005. M. Ruoho, K. Valset, T. Finstad, and I. Tittonen, "Measurement of thin film thermal conductivity using the laser flash method," Nanotechnology, vol. 26, no. 19, p. 195706, 2015. J. Mun, S. W. Kim, R. Kato, I. Hatta, S. H. Lee, and K. H. Kang, "Measurement of the thermal conductivity of TiO2 thin films by using the thermo-reflectance method," Thermochimica acta, vol. 455, no. 1-2, pp. 55-59, 2007. T. Wiśniewski, "Transient heat conduction in semi-infinite solid with specified surface heat flux," ed: Springer Reference, Dordrecht, 2014, pp. 6164-6171. C. Dames, "Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods," Annual Review of Heat Transfer, vol. 16, 2013. Y. Liu et al., "Sensitive 3-omega measurements on epitaxial thermoelectric thin films," in IOP Conference Series: Materials Science and Engineering, 2014, vol. 68, no. 1: IOP Publishing, p. 012005. J. Zhang, Y. Nagao, S. Kuwano, and Y. Ito, "Microstructure and temperature coefficient of resistance of platinum films," Japanese journal of applied physics, vol. 36, no. 2R, p. 834, 1997. D. Zhang, A. Behbahanian, and N. A. Roberts, "Thermal Conductivity Measurement of Supported Thin Film Materials Using the 3ω method," arXiv preprint arXiv:2007.00087, 2020. J. Green. "What is Chemical Vapor Deposition (CVD)?" Stanford Advanced Materials. https://www.sputtertargets.net/blog/what-is-chemical-vapor-deposition-cvd.html. A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Chapter 3—Interfaces and Surfaces," Chemistry of Nanomaterials; Awan, TI, Bashir, A., Tehseen, A., Eds, pp. 51-87, 2020. K. Puthankovilakam, "Limitations of Proximity Lithography Printing," EPFL, 2017. G. Vijaya, M. Krupashankara, B. Sridhara, and T. Shridhar, "Studies on nanostructure aluminium thin film coatings deposited using DC magnetron sputtering process," in IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, no. 1: IOP Publishing, p. 012071. "Signal Generator." CIRCUIT GLOBE. https://circuitglobe.com/signal-generator.html. S. Gopi, A. Sarma, A. Patel, and G. Ravi, "Non-thermal plasma at atmospheric pressure: system design and development," Instrumentation science & technology, vol. 41, no. 6, pp. 651-665, 2013. 馮禹嘉, "先進奈米碳管技術之熱傳導值量測," 2021. A. E. Aliev et al., "Thermal transport in MWCNT sheets and yarns," Carbon, vol. 45, no. 15, pp. 2880-2888, 2007. L. Qiu et al., "Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film," Scientific reports, vol. 6, no. 1, pp. 1-14, 2016. X. Zhang, W. Tan, F. Smail, M. De Volder, N. Fleck, and A. Boies, "High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites," Nanotechnology, vol. 29, no. 36, p. 365708, 2018. H. E. Misak, J. L. Rutledge, E. D. Swenson, and S. Mall, "Thermal transport properties of dry spun carbon nanotube sheets," Journal of Nanomaterials, vol. 2016, 2016. Y. Inoue et al., "Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs," Carbon, vol. 49, no. 7, pp. 2437-2443, 2011. C. Fenouillet-Beranger et al., "New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI," in 2014 IEEE International Electron Devices Meeting, 2014: IEEE, pp. 27.5. 1-27.5. 4. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88858 | - |
| dc.description.abstract | 隨著科技的進步,電子元件的功能越來越強大,而摩爾定律也逐漸達到物理極限,新的技術不斷被開發出來以延續摩爾定律,其中包括三維封裝技術,將原本平面的元件堆疊方式改為立體堆疊。然而隨著單位面積下的元件密度增加,三維積體電路亦面臨散熱問題,進而影響其性能和可靠性。
奈米碳管被認為是一種具有潛力的材料,可用於填充三維積體電路中的垂直通道矽通孔。與傳統金屬材料相比,奈米碳管具有優異的熱、電和機械性質,另外奈米碳管具有異向性熱傳性能,使其成為散熱應用的理想選擇之一。 本論文提出了一種基於三倍頻法的量測技術,用於測量奈米碳管薄膜在垂直和水平方向的熱傳導值。利用兩條金屬導線作為加熱器和探針,測量奈米碳管薄膜中溫度震盪造成的三倍頻電壓變化,進一步計算熱傳導值異向性,評估其在散熱應用中的效能。 此外,本論文也對量測技術、系統製作流程和熱傳導值量測的設計方案進行了全面的探究,包括確定最佳的測量參數、優化測量程序以及開發可靠的數據分析方法等,另外透過熱模擬分析奈米碳管在三維封裝結構中之應用。通過這些研究可以更準確地測量和評估奈米碳管薄膜的熱傳導性質,並為三維封裝的散熱問題提供有價值的參考依據。 總結而言,本論文對奈米碳管薄膜的熱傳導值量測方法進行了深入研究,並提供相關的測量技術、流程和設計方法,這將有助於推動三維封裝技術的發展,並為克服摩爾定律的限制提供新的可能性。 | zh_TW |
| dc.description.abstract | As three-dimensional packaging (3D packaging) is explored as a solution to Moore’s law limitations, thermal issues arise due to the increased density of components. Carbon nano-tubes (CNTs) is considered as an alternative to replace conventional metal as a filling material for through silicon vias (TSVs) due to its excellent thermal, electrical and mechanical properties. CNTs has anisotropic thermal properties, making it suitable for heat dissipation in three-dimensional integrated circuits (3D ICs). This work presents a method to measure both cross-plane and in-plane thermal conductivity of CNTs film, based on the third-harmonic method (3-ω method). Two metal lines are used as a heater and a probe to measure temperature fluctuation, allowing for thermal conductivity calculation. This study offers a comprehensive investigation of measurement technique, process flow, and designed scheme for the thermal conductivity extraction along different directions. Thermal simulations are being conducted to analyze the impact of thermal transfer in 3D ICs with carbon nanotube applications. These simulations open up new possibilities for overcoming the limitations of Moore’s Law. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:04:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:04:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
PUBLICATION LIST ii 致謝 iii 中文摘要 iv ABSTRACT v 目錄 vi 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 3 1.3 論文架構 11 第二章 文獻回顧與理論基礎 12 2.1 熱傳導值量測 12 2.2 三倍頻法熱傳導值量測 14 2.3 電熱耦合模擬 17 2.4 雙向熱傳導值量測理論 21 第三章 實驗儀器設備與原理 25 3.1 真空高溫爐系統 25 3.2 電子束蒸鍍系統 27 3.3 曝光機 29 3.4 磁控式真空濺鍍機 31 3.5 電源供應器 33 3.6 鎖相放大器 35 第四章 實驗流程與製程 37 4.1 實驗流程與架構 37 4.2 量測試片製備 38 4.2.1 奈米碳管成長 38 4.2.2 絕緣層沉積 40 4.3 熱傳導值量測系統 41 4.3.1 白金圖案設計 41 4.3.2 白金圖案製備 44 4.3.3 電路設計 50 4.3.4 量測系統架設 53 4.4 熱傳導值量測操作 59 4.4.1 頻率計算 59 4.4.2 熱傳導值量測 62 第五章 結果與討論 64 5.1 垂直方向奈米碳管熱傳導值 64 5.2 水平方向奈米碳管熱傳導值 65 5.3 國際文獻比較 66 5.4 三維封裝熱模擬分析 68 第六章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 78 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 熱模擬 | zh_TW |
| dc.subject | 熱傳導值 | zh_TW |
| dc.subject | 三倍頻法 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 異向性 | zh_TW |
| dc.subject | 三維封裝 | zh_TW |
| dc.subject | Third-harmonic method | en |
| dc.subject | Three-dimensional packaging | en |
| dc.subject | Anisotropy | en |
| dc.subject | Carbon nano-tubes | en |
| dc.subject | Thermal conductivity | en |
| dc.subject | Thermal simulation | en |
| dc.title | 奈米碳管熱傳導值異向性量測與應用 | zh_TW |
| dc.title | Anisotropic Thermal Conductivity Measurement of Carbon Nano-tubes with its Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;李敏鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Min-Hung Lee | en |
| dc.subject.keyword | 熱傳導值,三倍頻法,奈米碳管,異向性,三維封裝,熱模擬, | zh_TW |
| dc.subject.keyword | Thermal conductivity,Third-harmonic method,Carbon nano-tubes,Anisotropy,Three-dimensional packaging,Thermal simulation, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202302880 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
