Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷zh_TW
dc.contributor.advisorYu-Ting Hsuen
dc.contributor.author張耿嘉zh_TW
dc.contributor.authorKeng-Chia Changen
dc.date.accessioned2023-08-15T18:04:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation外交部領事事務局。世界各國因應COVID-19疫情相關措施一覽表。檢索日期:2023年5月20日。檢自: https://www.boca.gov.tw/cp-56-5248-791bd-1.html
交通部民用航空局。111年度民航機場設施與能量統計。檢索日期:2023年6月4日。檢自:https://www.caa.gov.tw/article.aspx?a=1749&lang=1
交通部民用航空局。民航統計年報。檢索日期:2023年2月27日。檢自:https://www.caa.gov.tw/article.aspx?a=283&lang=1
交通部民用航空局。民航運輸統計(國際及兩岸定期航線班機載客率-按航線及航空公司分)。檢索日期:2023年2月27日。檢自:https://www.caa.gov.tw/article.aspx?a=1752&lang=1
交通部觀光局。觀光統計資料庫。檢索日期:2022年7月30日。檢自:https://stat.taiwan.net.tw/
行政院主計總處。中華民國統計資訊網。檢索日期:2022年7月30日。檢自:https://www.stat.gov.tw/News_Content.aspx?n=3148&s=90031&Create=1&ccms_cs=1&state=1327FD6AD8DCDA52
宋鎮照 (2020)。新冠肺炎爆發與管制的國際政治經濟探討:在佛系抗疫和強制封鎖之間的國家政策措施分析。歐亞研究,第十二期。
凌瑞賢 (2015)。運輸規劃原理與實務。臺北市:鼎漢國際工程顧問公司。
桃園國際機場股份有限公司。客運量營運統計。檢索日期:2023年6月4日。檢自:https://www.taoyuanairport.com.tw/passengervolume
桃園國際機場股份有限公司。貨運量營運統計。檢索日期:2023年6月4日。檢自:https://www.taoyuanairport.com.tw/cargovolume
財團法人國家實驗研究院國家高速網路與計算中心。COVID-19全球疫情地圖。檢索日期:2023年1月20日。檢自:https://covid-19.nchc.org.tw/
許弼元(2013)。亞太地區機場航空貨運競爭(碩士論文)。國立陽明交通大學。臺北市。
陳威勳(2018)。機場航空網路直接連結動因探究(碩士論文)。國立陽明交通大學。臺北市。
經濟部國際貿易局。進出口貿易統計。檢索日期:2022年7月23日。檢自:https://cuswebo.trade.gov.tw/
臺灣民航資訊網。世界機場查詢。檢索日期:2022年6月23日。檢自:https://twairinfo.com/
衛生福利部。COVID-19 防疫關鍵決策時間軸。檢索日期:2023年2月15日。檢自:https://covid19.mohw.gov.tw/ch/sp-timeline0-205.html
Adikariwattage, V., Barros, A.G.d., Wirasinghe, S.C., Ruwanpura, J. (2012). Airport classification criteria based on passenger characteristics and terminal size. Journal of Air Transport Management, 24, 36-41.
Air Transport Bureau. (2023, January). Effects of novel Coronavirus (COVID-19) on civil aviation: Economic impact analysis. International Civil Aviation Organization. Montréal, Canada.
Albatross Airport Database. Accessed 20 November. 2022. Website: https://www.airport-information.com/
Andreana, G., Gualini, A., Martini, G., Porta, F., Scotti, d. (2021). The disruptive impact of COVID-19 on air transportation: An ITS econometric analysis. Research in Transportation Economics, 90, Article ID: 101042.
Ashford, N., Benchemam, Messaoud. (1988). Passengers' choice of airport: an application of the multinomial logit model. Transportation Research Record, Issue Number: 1147.
Boonekamp, T., Zuidberg, J., Burghouwt, G. (2018). Determinants of air travel demand: The role of low-cost carriers, ethnic links and aviation-dependent employment. Transportation Research Part A, 112, 18-28.
Chen, L., Miller-Hooks, E. (2012). Resilience: an indicator of recovery capability in intermodal freight transport. Transportation Science, 46, 109–123.
Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., …Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368, 395–400.
Clark, K. L., Bhatia, U., Kodra, E. A., Ganguly, A. R. (2018). Resilience of the US national airspace system airport network. IEEE Transactions On Intelligent Transportation Systems, 19, 3785–3794.
Forsyth, P., Guiomard, C., Niemeier, H. M. (2020). Covid −19, the collapse in passenger demand and airport charges. Journal of Air Transport Management, 89, Article ID: 101932.
Gao, Y. (2021). What is the busiest time at an airport? Clustering U.S. hub airports based on passenger movements. Journal of Transport Geography, 90, Airticle ID: 102931.
Great Circle Mapper. Accessed 15 August. 2022. Website: http://www.gcmap.com/
Guo, J., Zhu, X., Liu, C., Ge, S. (2021). Resilience modeling method of airport network affected by global public health events. Mathematical Problems in Engineering, 2021, Article ID: 6622031.
Harvey, G. (1987). Airport choice in a multiple airport region. Transportation Research Part A, 21, 439-449.
Hess, S., Polak, J. W. (2005). Mixed logit modelling of airport choice in multi-airport regions. Journal of Air Transport Management, 11, 59-68.
Hossain, M., Alam, S., Rees, T., Abbass, H. (2013). Australian airport network robustness analysis: A complex network approach. Australasian Transport Research Forum 2013 Proceedings, Brisbane, Australia.
Hosseini, S., Barker, K., Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering and System Safety, 145, 47–61.
Hsiao, C. Y., Hansen, M. (2011). A passenger demand model for air transportation in a hub-and-spoke network. Transportation Research Part E, 47, 1112-1125.
Huang, C. N., Liou, J. J. H., Lo, H. W., Chang, F. J. (2021). Building an assessment model for measuring airport resilience. Journal of Air Transport Management, 95, Article ID: 102101.
Iacus, S. M., Natale, F., Santamaria, C., Spyratos, S., Vespe, M. (2020). Estimating and projecting air passenger traffic during the COVID-19 coronavirus outbreak and its socio-economic impact. Safety Science, 129, Article ID: 104791.
International Air Transport Association. (2022). Air cargo traffic eased ahead of conflict in Eastern Europe. Cargo Chartbook, Q1 2022, 1.
Jakšić, Z., Janic, M. (2020). Modeling resilience of the ATC (Air Traffic Control) sectors. Journal of Air Transport Management, 89, Article ID: 101891.
Janić, M, (2005). Modeling the large scale disruptions of an airline network. Journal of Transportation Engineering, 131, 249-260.
Janić, M. (2009). Modeling airport operations affected by a large-scale disruption. Journal of Transportation Engineering, 135. 206-216.
Janić, M. (2015). Reprint of ‘‘Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event’’. Transportation Research Part A, 71, 77–92.
Janić, M. (2019). Modeling the resilience of an airline cargo transport network affected by a large scale disruptive event. Transportation Research Part D, 77. 425-448.
Kuo, P. F., Chiu, C. S. (2021). Airline transportation and arrival time of international disease spread: A case study of Covid-19. PLoS ONE, 16 (8), Article ID: e0256398.
Kuo, P. F., Putra, I G. B., Setiawan, F. A., Wen, T. H., Chiu, C. S., Sulistyah, U. D. (2022). The impact of the COVID-19 pandemic on O-D flow and airport networks in the origin country and in Northeast Asia. Journal of Air Transport Management, 100, Article ID 102192.
Lai, S. l., Lu, W. L. (2005). Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management, 11, 455-458.
Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine, 27, 1–7.
Li H., Hu, X. B., Guo, X., Xu, Z., Gelder, P. H. A. J. M. v. (2016). A new quantitative method for studying the vulnerability of civil aviation network system to spatially localized hazards. International Journal of Disaster Risk Science, 7, 245–256.
Likas, A., Vlassis, N., Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognitio, 36, 451-461.
Loo, .B. P. Y., (2008). Passengers’ airport choice within multi-airport regions (MARs): some insights from a stated preference survey at Hong Kong International Airport. Journal of Transport Geography, 16, 117-125.
Macrotrends. Accessed 20 November. 2022. Website: https://www.macrotrends.net/cities/21673/toyama/population
Marcucci, E., Gatta, V. (2011). Regional airport choice: Consumer behaviour and policy implications. Journal of Transport Geography, 19, 70-84.
Marta, Ž. (2017). Cluster analysis of world's airports on the basis of number of passengers handled (Case Study Examining the Impact of Significant Events). Statistika, 97, 74-88.
Mattsson, L. G., Jenelius, E. (2015). Vulnerability and resilience of transport systems – A discussion of recent research. Transportation Research Part A, 81, 16-34.
Mayer, R. (2016). Airport classification based on cargo characteristics. Journal of Transport Geography, 54, 53–65.
Park, Y., Ha, H. K. (2006). Analysis of the impact of high-speed railroad service on air transport demand. Transportation Research Part E, 42, 95-104.
Pishdar, M., Ghasemzadeh, F., Maskeliūnaitė, L., Bražiūnas, J., (2019). The influence of resilience and sustainability perception on airport brand promotion and desire to reuse of airport services: the case of Iran airports. Transport, 34, 617–627.
Postorino, M. N., Versaci, M. (2014). A geometric fuzzy-based approach for airport clustering. Advances in Fuzzy Systems, 2014, Airticle ID: 201243.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
Sarkis, J., Talluri, S. (2004). Performance based clustering for benchmarking of US airports. Transportation Research Part A, 38, 329–346.
Shen, L David (1990). Airport terminal designs with automated people movers. Transportation Research Record, Issue Number: 1273, 30-39.
Sun, X., Wandelt, S., Zhang, A. (2020). How did COVID-19 impact air transportation? A first peek through the lens of complex networks. Journal of Air Transport Management, 89, Article ID: 101928.
Suryani, E., Chou, S. Y., Chen, C. H. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37, 2324-2339.
Vogel, H. A., Graham, A. (2013). Devising airport groupings for financial benchmarking. Journal of Air Transport Management, 30, 32–38.
Wang, Y., Zhan, J., Xu, X., Li. L., Chen. P., Hansen, M. (2019). Measuring the resilience of an airport network. Chinese Journal of Aeronautics, 32, 2694–2705.
Yang, C. W., Lu, J. L., Hsu, C. Y. (2014). Modeling joint airport and route choice behavior for international and metropolitan airports. Journal of Air Transport Management, 39, 89-95.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88857-
dc.description.abstract2020年新冠肺炎疫情 (COVID-19) 爆發,世界各國為減緩疫情傳播速度,陸續實施邊境管制、旅遊禁令及防疫相關措施,但此舉對於疫情前蓬勃發展的航空業無疑是一場災難。依據國際民用航空組織 (International Civil Aviation Organization, ICAO) 統計,2020年全球載客量較2019年減少約60%,眾多航線的航班因全球旅客量縮減而被迫取消或甚至停止營運,這導致航空公司無論在營運面或財務面均陷入困境,而桃園國際機場在疫情席捲下同樣無法倖免,2020年航班起降架次及載客人數分別較去年減少55%及85%,所受衝擊實屬巨大。

依據本研究觀察,來自不同航線入境桃園國際機場的客運及貨運航班在遭遇疫情時有其獨特的韌性表現,受影響的程度亦有所差異。因此,為系統化瞭解COVID-19對該機場入境航班的實際影響,本研究使用該機場的航班降落資料,從每條航線的航班變化趨勢中擷取4個與韌性相關的變數,並基於該等韌性特徵,運用K-means演算法將航線分群。此外,為進一步探討特定航線被分至同群的原因,本研究另蒐集機場設施、國際貿易及來臺旅客等因素作為變數資料,分別針對客運及貨運分群建立多項羅吉特模式,最後以2022年10月13日我國邊境解封後新開闢的義大利米蘭 (MXP) 及德國慕尼黑 (MUC) 2條新航線進行案例研究分析。

整體而言,貨運航線的韌性表現優於客運,並於2020年3月已恢復至疫情前的水準並有所成長,其中貨運部分又以區域航線的韌性優於長程航線,衰退速度最慢,恢復速度最快,平均衰退幅度約10%,而影響因素包含始發機場地理位置及所屬國與我國間貿易情形等;至於客運部分,疫情雖對來自樞紐機場的客運航線造成衝擊,但其韌性表現仍優於來自中國大陸、日本及韓國等非樞紐型機場的區域航線,而商務旅次愈多的客運航線,航班衰退幅度可能就愈大。此外,疫情期間民航主管機關開放的客機腹艙或客艙載貨政策有助於提升航線的韌性表現。

最後,本研究所提出的分群結果及羅吉特模式,有利於政府部門從韌性的角度,重新審視桃園國際機場與各航線經營業者於疫情期間受影響的情形,亦可提供航空公司未來在規劃新闢航線時,預測航線市場倘再次面臨類似COVID-19全球公衛危機時的表現,以作為航線籌辦及後續經營風險的評估參考。
zh_TW
dc.description.abstractThe outbreak of the COVID-19 pandemic in 2020 led to worldwide border controls, travel bans, and epidemic preventions to reduce the spread of the virus. These measures undoubtedly had a catastrophic impact on the thriving aviation industry. According to International Civil Aviation Organization (ICAO) statistics, global air passenger traffic decreased by approximately 60% in 2020 compared to 2019. Numerous flights were forced to be canceled or even suspended due to the reduction in passenger volume. This situation severely affected both the operational and financial aspects of airlines. Taoyuan International Airport was also one of the victims during the pandemic, with a 55% reduction in flight movements and a 85% decrease in air passenger traffic in 2020 compared to 2019.

This study observed that inbound passenger and cargo flights from different airports to Taoyuan International Airport exhibited unique resilience in the face of the pandemic, with varying degrees of impact. Therefore, to systematically understand the actual impact of COVID-19 on inbound flights at the airpoty, this study utilized flight landing data and extracted four resilience-related variables from the flight trends of each air route. Based on these resilience characteristics, this study employed the K-means algorithm to cluster the departure airports of inbound flights of Taoyuan International Airport. Additionally, to further investigate why specific routes were assigned to the same cluster, this study also established Multinomial logit (MNL) model for passenger and cargo clusters by airport facilities, international trade, and tourism data. Finally, a case study analysis was conducted on two newly opened routes, Milan (MXP) in Italy and Munich (MUC) in Germany, after the border control relaxation in Taiwan on October 13, 2022.

Overall, cargo routes demonstrated better resilience than passenger routes and had already recovered to pre-pandemic levels by March 2020 and even experienced growth later. Regional cargo routes exhibited greater resilience than long-haul cargo routes, with the slowest decline and fastest recovery speed, averaging a decline of approximately 10%. The influencing factors included the geographic location of the departure airport and the international trade situation. As for passenger routes, although the pandemic impacted passenger flights from hub airports, their resilience performance was still better than that of regional flights from China, Japan, and South Korea. Besides, passenger routes with a higher number of business travelers may experience greater decline in flight operations. Additionally, the policy of allowing cargo to be carried in the belly holds or cabins of passenger aircraft by the Civil Aeronautics Administration of the Ministry of Transportation and Communications in Taiwan has helped enhance the resilience performance of air routes.

Finally, the clustering results and MNL models proposed in this study provide government agencies with a perspective to reassess the impact of Taoyuan International Airport and airlines during the pandemic from a resilience standpoint. They can also serve as references for airlines when planning new routes, predicting the performance of route markets in the event of a similar global public health crisis like COVID-19, and evaluating route planning and subsequent operational risks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T18:04:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T18:04:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 桃園國際機場簡介 3
1.3 研究動機及目的 6
1.4 研究範圍 7
1.5 論文架構 7
第二章 文獻回顧 9
2.1 COVID-19對航空業衝擊相關研究 9
2.2 韌性相關研究 11
2.3 資料分群相關研究 12
2.4 航空旅運需求相關研究 13
2.5 文獻回顧小節 15
第三章 研究方法 17
3.1 原始資料處理 18
3.2 韌性特徵擷取 20
3.3 非監督式分群方法K-means 23
3.4 多項羅吉特模式 (Multinomial logit model) 23
3.5 研究限制 25
第四章 資料基本分析 27
4.1 資料概述 27
4.2 敘述性統計分析 27
4.2.1 疫情前後整體客貨運航班之變化趨勢 27
4.2.2 依地理分區探討疫情前後入境航班之變化趨勢 31
4.3 小結 36
第五章 資料分群與羅吉特模式 37
5.1 資料分群 37
5.1.1 決定資料分群數目 37
5.1.2 各分群特性分析與說明 39
5.1.3 分群結果探討 48
5.2 羅吉特模式建構結果 65
5.2.1 建模初始變數說明 65
5.2.2 羅吉特建模變數相關性分析 68
5.2.3 多項羅吉特模式建構結果 71
5.3 羅吉特模式結果討論 75
5.3.1 客運分群羅吉特結果探討 75
5.3.2 貨運分群羅吉特結果探討 86
5.4 羅吉特模式案例研究 97
第六章 結論與建議 102
6.1 研究結論 102
6.2 未來建議 104
6.2.1 實務建議 104
6.2.2 研究限制 104
6.2.3 未來可延伸之研究方向 105
參考文獻 106
附錄1:始發機場詳錄及其基本資訊 111
附錄2:客運航線航班分群結果 115
附錄3:貨運航線航班分群結果 118
-
dc.language.isozh_TW-
dc.subjectCOVID-19疫情zh_TW
dc.subject羅吉特zh_TW
dc.subjectK-means分群zh_TW
dc.subject韌性zh_TW
dc.subject航班zh_TW
dc.subject機場zh_TW
dc.subject航空運輸zh_TW
dc.subjectair transportationen
dc.subjectCOVID-19 pandemicen
dc.subjectlogit modelen
dc.subjectK-means clusteringen
dc.subjectflighten
dc.subjectresilienceen
dc.subjectairporten
dc.title基於韌性特徵探討COVID-19疫情對桃園國際機場 入境航班之影響zh_TW
dc.titleDiscussion on the impact of the COVID-19 pandemic on inbound flights of Taoyuan Airport based on resilience characteristicsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭傑諭;郭佩棻zh_TW
dc.contributor.oralexamcommitteeChieh-Yu Hsiao;Pei-Fen Kuoen
dc.subject.keywordCOVID-19疫情,航空運輸,機場,航班,韌性,K-means分群,羅吉特,zh_TW
dc.subject.keywordCOVID-19 pandemic,air transportation,airport,flight,resilience,K-means clustering,logit model,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202303034-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved