請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88846完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雨 | zh_TW |
| dc.contributor.advisor | U Lei | en |
| dc.contributor.author | 賴冠廷 | zh_TW |
| dc.contributor.author | Kuan-Ting Lai | en |
| dc.date.accessioned | 2023-08-15T18:01:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 1. Bird, R B, R. C. Armstrong, and O. Hassager, “Dynamics of polymeric liquids. Volume I – Fluid Mechanics, Volume II – Kinetic theory” 2nd ed., John Wiley & Sons, 1987.
2. Giesekus, H., “A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility,” Journal of Non-Newtonian Fluid Mechanics,” 11(1), p.69-109, 1982. 3. Evans, R.E. and K. Walters, “Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquids,” Journal of Non-Newtonian Fluid Mechanics, 20, p.11-29, 1986. 4. Niederkorn, T. C. and J. M. Ottino, “Mixing of a viscoelastic fluid in a time-periodic flow,” Journal of Fluid Mechanics, 256, p.243-268, 1993. 5. Debbaut, B., T. Avalosse, J. Dooley and K. Hughes, “On the development of secondary motions in straight channels induced by the second normal stress difference - experiments and simulations,” Journal of Non-Newtonian Fluid Mechanics, 69, p.255-271, 1997. 6. Alves, M. A., F. T. Pinho and P. J. Oliveira, “The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods,” Journal of Non-Newtonian Fluid Mechanics, 97(2), p.207-232, 2001. 7. Gan, H. P., Y. C. Lam and N.-T. Nguyen, “Polymer-based device for efficient mixing of viscoelastic fluids,” Applied Physics Letters, 88, 224103, 2006. 8. Gan, H.Y., Y. C. Lam, N. T. Nguyen, K. C. Tam and C. Yang, “Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number,” Microfluidics and Nanofluidics, 2006. 3, p.101-108, 2007. 9. de Souza Mendes, P. R., “Dimensionless non-Newtonian fluid mechanics,” Journal of Non-Newtonian Fluid Mechanics. 147(1), p.109-116, 2007. 10. Lam, Y., C., H. Y. Gan, N. T. Nguyen and H. Lie, “, Micromixer based on viscoelastic flow instability at low Reynolds number.” Biomicrofluidics, 3(1): p. 014106, 2009. 11. Stavland, A., H. C. Jonsbraten, A. Lohne, A. Moen and N. H. Giske, et al. “Polymer Flooding – Flow Properties in Porous Media Versus Rheological Parameters,” in SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain, June 2010. 12. Jha, B., L. Cueto-Felgueroso and R. Juanes, “Fluid Mixing from Viscous Fingering,” Physical Review Letters, 106(19), 194502, 2011. 13. Villone, M.M., G. D’Avino, M. A. Hulsen, F. Greco and P. L. Maffettone, “Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows,” Journal of Non-Newtonian Fluid Mechanics, 195, p.1-8, 2013. 14. Zhang, M., Y. Cui, W. Cai, Z. Wu, Y. Li, F. Li and W. Zhang et al., “High Mixing Efficiency by Modulating Inlet Frequency of Viscoelastic Fluid in Simplified Pore Structure,” Processes, 6(11), 2108. 15. COMSOL Multiphysics Reference Manual. 2022; Available from: https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COSMOL_ReferenceManual.pdf. 16. COMSOL Multiphysics. CFD Module User’s Guide. 2022; Available from: https://doc.comsol.com/6.1/doc/com.comsol.help.cfd/CFDModuleUsersGuide. 17. COMSOL Multiphysics. Polymer flow modulus manual.2022;Available from: https://doc.comsol.com/6.1/doc/com.comsol.help.polymer/PolymerFlowModuleUsersGuide.pdf | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88846 | - |
| dc.description.abstract | 本研究利用COMSOL Multiphysics軟體,以數值方法研究黏彈流體在平面突縮/突張微流道混合器內的流場及混合現象,並和牛頓流體狀况作比較。此混合器基本上由三段不同矩形截面積的扁平微流道連結而成,以一段窄流道(稱頸部段)連結上下游兩段寬流道,窄流道寬度與其上游寬流道寬度的比值稱為收縮比。計算結果顯示,黏彈流體與牛頓流體的混合均主發生在頸部段,下游突張流道對促進混合貢獻不大。混合效率均隨收縮比增加而增加,但會趨於飽和;且黏彈流體的混合效率優於牛頓流體者。這些結果均和流場的第一法向應力差和第二法向應力差呈正相關,表示流體的黏彈和流體混合有密切關連。本文亦對不同流量Q的就况進行了計算,結果顯示在Q > 5 ml/hr後,濃度分布已不太變化。本研究的結果對於深入理解黏彈流體在微流道中的行為以及混合過程的控制具有重要意義,可供設計和優化微流道混合器提供重要參考。 | zh_TW |
| dc.description.abstract | Numerical study was performed for studying the flow field and mixing phenomenon of viscoelastic fluids in a planar abrupt contraction/expansion microchannel mixer, with the aid of COMSOL Multiphysics, and the results were contrasted with those of Newtonian fluids. The mixer is essentially a device constructed by connecting three microchannels with different rectangular cross sections; with a narrow channel (called the necking section) in the middle. The ratio between the width of the necking section to that of the upstream channel is called the contraction ratio. It was found that major mixing occurs in the necking region for both viscoelastic fluid and Newtonian fluid, with minor mixing in the downstream channel. The mixing efficiency increases with contraction ratio, but tends to be saturated for sufficiently large contraction ratio; and the mixing of viscoelastic fluid is better than that of Newtonian fluid. All these mixing results are correlated with the first and second normal stress differences of the flow, indicating that the mixing is related strongly to the viscoelastic characteristics. Simulations have also been performed for different inlet flow rates, and the concentration distribution varies slightly when Q > 5 ml/hr. The present result is important for understanding the mixing phenomena of viscoelastic fluid, and is helpful for the design and optimization of mixers, particular in microfluidics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T18:01:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T18:01:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 簡介 - 黏彈流體在微流道中混合 1 1.2 文獻回顧 2 1.3 研究動機 9 2 第二章 理論模型 11 2.1 本文所使用的微流道混合器與基本假設 11 2.1.1 平面突縮/突張微流道混和器(Planar contraction/expansion micromixer) 11 2.1.2 基本假設 14 2.2 流體性質 14 2.2.1 流體模型 16 2.3 統御方程式 19 2.3.1 流場 19 2.3.2 混合 - 稀薄質傳法 22 2.3.3 混合效率 23 2.4 邊界條件與初始條件 23 2.5 COMSOL Multiphysics 計算軟體及相關計算方法 24 3 第三章 結果與討論 27 3.1 網格設定 28 3.2 結果驗證 -與 Zhang, M et al [14]的混合結果比較 30 3.2.1 定性分析 30 3.2.2 定量分析 33 3.3 黏彈流體與牛頓流體在微流道中混合的差異 35 3.3.1 混合結果 36 3.3.2 流場分析 39 3.4 不同突縮比對混合之影響 48 3.4.1 混合結果 48 3.4.2 流場分析 50 3.5 不同流量對混合之影響 61 4 第四章 結論與未來展望 69 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 黏彈流體 | zh_TW |
| dc.subject | 平面突縮/突張微流道 | zh_TW |
| dc.subject | 混合 | zh_TW |
| dc.subject | 法向應力差 | zh_TW |
| dc.subject | 收縮比 | zh_TW |
| dc.subject | Mixing | en |
| dc.subject | Planar abrupt contraction/expansion micro- channel | en |
| dc.subject | Normal stress differences | en |
| dc.subject | Viscoelastic fluid | en |
| dc.subject | Contraction ratio | en |
| dc.title | 突縮流道內黏彈流體混合的數值研究 | zh_TW |
| dc.title | Numerical Study on Mixing of Viscoelastic Fluids in an Abrupt Contraction Channel | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳希立;雷顯宇;田華忠 | zh_TW |
| dc.contributor.oralexamcommittee | Sih-Li Chen;Hsien-Yu Lei;Hwa-Chong Tien | en |
| dc.subject.keyword | 黏彈流體,混合,平面突縮/突張微流道,法向應力差,收縮比, | zh_TW |
| dc.subject.keyword | Viscoelastic fluid,Mixing,Planar abrupt contraction/expansion micro- channel,Normal stress differences,Contraction ratio, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202303125 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
