請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88835
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章 | zh_TW |
dc.contributor.advisor | Soo-Chang Pei | en |
dc.contributor.author | 張智堯 | zh_TW |
dc.contributor.author | Chih-Yao Chang | en |
dc.date.accessioned | 2023-08-15T17:58:59Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-11 | - |
dc.identifier.citation | [1] K. Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 26:3142–3155, 2016.
[2] K. Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for image restoration. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2808–2817, 2017. [3] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natu ral images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001. [4] K. Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:6360–6376, 2020. [5] Yu Sun, Brendt Wohlberg, and Ulugbek S. Kamilov. An online plug-and-play al gorithm for regularized image reconstruction. IEEE Transactions on Computational Imaging, 5:395–408, 2018. [6] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image prior. International Journal of Computer Vision, 128:1867–1888, 2017. [7] Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization by denoising (red). ArXiv, abs/1611.02862, 2016. [8] Gary Mataev, Michael Elad, and Peyman Milanfar. Deepred: Deep image prior powered by red. ArXiv, abs/1903.10176, 2019. [9] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007. [10] Xin Jin, Li Zhang, Chaowei Shan, Xin Li, and Zhibo Chen. Dual prior learning for blind and blended image restoration. IEEE Transactions on Image Processing, 31:1042–1056, 2022. [11] Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brendt Wohlberg. Plug and-play priors for model based reconstruction. In 2013 IEEE Global Conference on Signal and Information Processing, pages 945–948, 2013. [12] Zhiyuan Zha, Bihan Wen, Xin Yuan, Joey Tianyi Zhou, Jiantao Zhou, and Ce Zhu. Triply complementary priors for image restoration. IEEE Transactions on Image Processing, 30:5819–5834, 2021. [13] Ulugbek S. Kamilov, Charles A. Bouman, Gregery T. Buzzard, and Brendt Wohlberg. Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms, and applications. IEEE Signal Processing Magazine, 40(1):85–97, 2023. [14] Avrajit Ghosh, Michael T. McCann, Madeline Mitchell, and Saiprasad Ravishankar. Learning sparsity-promoting regularizers using bilevel optimization. ArXiv, abs/2207.08939, 2022. [15] Ulugbek S. Kamilov, Hassan Mansour, and Brendt Wohlberg. A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Signal Processing Letters, 24(12):1872–1876, 2017. [16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis tributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1–122, 01 2011. [17] Edward T. Reehorst and Philip Schniter. Regularization by denoising: Clarifications and new interpretations. IEEE Transactions on Computational Imaging, 5:52–67, 2018. [18] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denois ing. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol. 2, 2005. [19] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1256–1272, 2017. [20] Gregery T. Buzzard, Suhas Sreehari, and Charles A. Bouman. Plug-and-play un plugged: Optimization free reconstruction using consensus equilibrium. SIAM J. Imaging Sci., 11:2001–2020, 2017. [21] Stanley H. Chan, Xiran Wang, and Omar A. Elgendy. Plug-and-play admm for im age restoration: Fixed-point convergence and applications. IEEE Transactions on Computational Imaging, 3:84–98, 2016. [22] Tim Meinhardt, Michael Möller, Caner Hazirbas, and Daniel Cremers. Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. 2017 IEEE International Conference on Computer Vision (ICCV), pages 1799–1808, 2017. [23] Suhas Sreehari, S. V. Venkatakrishnan, Brendt Wohlberg, Gregery T. Buzzard, Lawrence F. Drummy, Jeffrey P. Simmons, and Charles A. Bouman. Plug-and play priors for bright field electron tomography and sparse interpolation. IEEE Transactions on Computational Imaging, 2(4):408–423, 2016. [24] Jean Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France, 93:273–299, 1965. [25] Ernest K. Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Plug-and-play methods provably converge with properly trained denois ers. In International Conference on Machine Learning, 2019. [26] Yu Sun, Zihui Wu, Xiaojian Xu, Brendt Wohlberg, and Ulugbek S. Kamilov. Scal able plug-and-play admm with convergence guarantees. IEEE Transactions on Computational Imaging, 7:849–863, 2020. [27] Yu Sun, Jiaming Liu, and Ulugbek S. Kamilov. Block coordinate regularization by denoising. IEEE Transactions on Computational Imaging, 6:908–921, 2019. [28] Stanley H. Chan, Ramsin Khoshabeh, Kristofor B. Gibson, Philip E. Gill, and Truong Q. Nguyen. An augmented lagrangian method for total variation video restoration. IEEE Transactions on Image Processing, 20(11):3097–3111, 2011. [29] Arash Rasti-Meymandi, Aboozar Ghaffari, and Emad Fatemizadeh. Plug and play augmented hqs: Convergence analysis and its application in mri reconstruction. Neurocomputing, 518:1–14, 2023. [30] Karen Egiazarian and Vladimir Katkovnik. Single image super-resolution via bm3d sparse coding. In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 2849–2853, 2015. [31] Michal Irani and Shmuel Peleg. Motion analysis for image enhancement: Reso lution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 4(4):324–335, 1993. [32] Ningning Zhao, Qi Wei, Adrian Basarab, Nicolas Dobigeon, Denis Kouamé, and Jean-Yves Tourneret. Fast single image super-resolution using a new analytical solu tion for ℓ2–ℓ2 problems. IEEE Transactions on Image Processing, 25(8):3683–3697, 2016. [33] K. Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3214–3223, 2020. [34] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 693–696, 2009. [35] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Op erator Theory in Hilbert Spaces. CMS books in mathematics, 1 2017. [36] Emil Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications, 1:153–156, 1969. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88835 | - |
dc.description.abstract | 隨著圖像復原演算法的發展,許多人都同意先驗(prior)在提高復原性能方面扮演了很重要的角色。最近發展出的基於隨插即用 (Plug-and-Play) 的方法,將基於模型的圖像復原方法和基於學習的方法的優點相結合,因其高效能和易於實現而受到廣泛關注。
本論文探討基於隨插即用的圖像復原演算法,這是一種對於解決圖像復原問題來說很有效的方法。第一章介紹了本文的主題。第二章探討了將隨插即用先驗應用於成像問題中,包括建立圖像復原模型、圖像復原的最佳化問題、隨插即用架構以及相關工作。第三章涵蓋了基於可變分割演算法的隨插即用圖像復原,包括交替方向乘子法(ADMM)、半二次分割演算法(HQS)和加速迭代收縮/閾值演算法(FISTA),以及它們的收斂性分析和實驗結果。在第四章中,我們研究了與隨插即用相關的演算法,像是去噪正則化 (RED) 和多重代理共識平衡 (MACE),以及它們的收斂性分析和實驗結果。最後,第五章是本文的結論。總體而言,這篇論文全面介紹了基於隨插即用的圖像復原演算法和其相關的演算法以及它們在各種圖像復原任務中的應用。 | zh_TW |
dc.description.abstract | With the development of the image restoration algorithms, one can admit that priors play in a important role in improving restoration performance. The recently developed plug-and-play prior method, which incorporates the advantages of model-based image restoration method and the learning-based method, owes its popularity to its efficiency and the ease of implementation.
This paper focuses on Plug-and-Play based Image Restoration Algorithms, which are a promising and effective approach to address image restoration problems. Chapter 1 provides an introduction to the topic. In Chapter 2, the Plug-and-Play prior in imaging problem is discussed, including the modeling for Image Restoration, Optimization problem in Image Restoration, Plug-and-play framework, and related work. Chapter 3 covers Variable splitting algorithms for plug-and-play image restoration, including Alternating Direction Method of Multipliers (ADMM), Half Quadratic Splitting algorithm (HQS) and Fast Iterative Shrinkage/Thresholding Algorithm (FISTA), as well as their convergence analysis and experiment results. In Chapter 4, we also investigate PnP-related algorithms such as Regularization by Denoising (RED) and Multi-Agent Consensus Equilibrium (MACE), along with their convergence analysis and experiment results. Finally, Chapter 5 concludes the paper. Overall, this paper provides a comprehensive overview of plug-and-play based image restoration algorithms and Plug-and-Play related algorithms, as well as their applications in various image restoration tasks. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:58:59Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:58:59Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Plug-and-Play Prior in Imaging Problem 3 2.1 Modeling of Image Restoration . . . . . . . . . . . . . . . . . . . . 3 2.2 Optimization Problem in Image Restoration . . . . . . . . . . . . . . 4 2.3 Plug-and-Play Framework . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 3 Variable Splitting Algorithms for Plug-and-play Image Restora tion 10 3.1 Alternating Direction Method of Multipliers . . . . . . . . . . . . . . 11 3.1.1 Introduction to PnP-ADMM . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Convergence Analysis of PnP-ADMM . . . . . . . . . . . . . . . . 12 3.1.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Half Quadratic Splitting Algorithm . . . . . . . . . . . . . . . . . . 17 3.2.1 Introduction to PnP-HQS . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Parameter Setting for Convergence . . . . . . . . . . . . . . . . . . 18 3.2.3 Comparison with PnP-ADMM . . . . . . . . . . . . . . . . . . . . 19 3.2.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.4.1 Image Deblurring . . . . . . . . . . . . . . . . . . . . 19 3.2.4.2 Single Image Super-Resolution . . . . . . . . . . . . . 22 3.3 Fast Iterative Shrinkage/Thresholding Algorithm . . . . . . . . . . . 25 3.3.1 Introduction to PnP-FISTA . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Convergence Analysis of PnP-FISTA . . . . . . . . . . . . . . . . . 26 3.3.3 Comparison with PnP-ADMM . . . . . . . . . . . . . . . . . . . . 27 3.3.4 Online Variant of PnP-FISTA . . . . . . . . . . . . . . . . . . . . . 28 3.3.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 4 Plug-and-Play Related Algorithms 34 4.1 Regularization by Denoising . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 Introduction to RED . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.2 Convergence Analysis of RED . . . . . . . . . . . . . . . . . . . . 36 4.1.3 Deep Image Prior Extension of RED . . . . . . . . . . . . . . . . . 37 4.1.3.1 Deep Image Prior . . . . . . . . . . . . . . . . . . . . 37 4.1.3.2 DeepRED . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Multi-Agent Consensus Equilibrium . . . . . . . . . . . . . . . . . . 43 4.2.1 Introduction to MACE . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 5 Conclusion 50 References 51 | - |
dc.language.iso | en | - |
dc.title | 隨插即用方式的影像復原演算法 | zh_TW |
dc.title | Plug-and-Play Based Image Restoration Algorithms | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 丁建均;鍾國亮;杭學鳴;曾建誠 | zh_TW |
dc.contributor.oralexamcommittee | Jian-Jiun Ding;Kuo-Liang Chung;Hsueh-Ming Hang;Chien-Cheng Tseng | en |
dc.subject.keyword | 隨插即用,影像復原,交替方向乘子法,半二次分割演算法,加速迭代收縮/閾值演算法,去噪正則化,多重代理共識平衡, | zh_TW |
dc.subject.keyword | Plug-and-Play,Image Restoration,Alternating Direction Method of Multipliers,Half Quadratic Splitting,Fast Iterative Shrinkage/Thresholding Algorithm,Regularization by Denoising,Multi-Agent Consensus Equilibrium, | en |
dc.relation.page | 55 | - |
dc.identifier.doi | 10.6342/NTU202301425 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 7.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。