Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李士傑zh_TW
dc.contributor.advisorShyh-Jye Leeen
dc.contributor.author許子易zh_TW
dc.contributor.authorTzu-Yi Hsuen
dc.date.accessioned2023-08-15T17:58:29Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAsakawa, K., Suster, M. L., Mizusawa, K., Nagayoshi, S., Kotani, T., Urasaki, A., Kishimoto, Y., Hibi, M., & Kawakami, K. (2008). Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1255-1260. https://doi.org/10.1073/pnas.0704963105
Caputo, L., Witzel, H. R., Kolovos, P., Cheedipudi, S., Looso, M., Mylona, A., van IJcken, W. F. J., Laugwitz, K. L., Evans, S. M., Braun, T., Soler, E., Grosveld, F., & Dobreva, G. (2015). The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors. Cell Stem Cell, 17(3), 287-299. https://doi.org/10.1016/j.stem.2015.08.007
Diogo, R. (2020). Cranial or postcranial-Dual origin of the pectoral appendage of vertebrates combining the fin-fold and gill-arch theories? Dev Dyn, 249(10), 1182-1200. https://doi.org/10.1002/dvdy.192
Duboc, V., Sulaiman, F. A., Feneck, E., Kucharska, A., Bell, D., Holder-Espinasse, M., & Logan, M. P. O. (2021). Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development, 148(19). https://doi.org/10.1242/dev.199580
Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113
Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M., & Dubchak, I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res, 32(Web Server issue), W273-279. https://doi.org/10.1093/nar/gkh458
Gai, Z., Li, Q., Ferron, H. G., Keating, J. N., Wang, J., Donoghue, P. C. J., & Zhu, M. (2022). Galeaspid anatomy and the origin of vertebrate paired appendages. Nature, 609(7929), 959-963. https://doi.org/10.1038/s41586-022-04897-6
Gegenbaur, C., Bell, F. J., & Lankester, E. R. (1878). Elements of comparative anatomy. Macmillan and Co.
Hwang, W. Y., Fu, Y. F., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R. J., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3), 227-229. https://doi.org/10.1038/nbt.2501
Itou, J., Kawakami, H., Quach, T., Osterwalder, M., Evans, S. M., Zeller, R., & Kawakami, Y. (2012). Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development, 139(9), 1620-1629. https://doi.org/10.1242/dev.073056
Janvier, P., Arsenault, M., & Desbiens, S. (2004). Calcified cartilage in the paired fins of the osteostracan Escuminaspis laticeps (Traquair 1880), from the Late Devonian of Miguasha (Quebec, Canada), with a consideration of the early evolution of the pectoral fin endoskeleton in vertebrates. Journal of Vertebrate Paleontology, 24(4), 773-779. https://doi.org/Doi 10.1671/0272-4634(2004)024[0773:Ccitpf]2.0.Co;2
Jurberg, A. D., Aires, R., Varela-Lasheras, I., Novoa, A., & Mallo, M. (2013). Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell, 25(5), 451-462. https://doi.org/10.1016/j.devcel.2013.05.009
Kang, J., Nathan, E., Xu, S. M., Tzahor, E., & Black, B. L. (2009). Isl1 is a direct transcriptional target of Forkhead transcription factors in second heart field-derived mesoderm. Developmental Biology, 334(2), 513-522. https://doi.org/10.1016/j.ydbio.2009.06.041
Kawakami, Y., Marti, M., Kawakami, H., Itou, J., Quach, T., Johnson, A., Sahara, S., O'Leary, D. D. M., Nakagawa, Y., Lewandoski, M., Pfaff, S., Evans, S. M., & Belmonte, J. C. I. (2011). Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development, 138(20), 4465-4473. https://doi.org/10.1242/dev.065359
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn, 203(3), 253-310. https://doi.org/10.1002/aja.1002030302
Kwan, K. M., Fujimoto, E., Grabher, C., Mangum, B. D., Hardy, M. E., Campbell, D. S., Parant, J. M., Yost, H. J., Kanki, J. P., & Chien, C. B. (2007). The Tol2kit: A multisite Gateway-based construction kit for Tol2 transposon transgenesis constructs. Developmental Dynamics, 236(11), 3088-3099. https://doi.org/10.1002/dvdy.21343
Ludwig, M. Z., Bergman, C., Patel, N. H., & Kreitman, M. (2000). Evidence for stabilizing selection in a eukaryotic enhancer element. Nature, 403(6769), 564-567. https://doi.org/10.1038/35000615
Ludwig, M. Z., Patel, N. H., & Kreitman, M. (1998). Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development, 125(5), 949-958. https://doi.org/10.1242/dev.125.5.949
Lyons, E., & Freeling, M. (2008). How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant Journal, 53(4), 661-673. https://doi.org/10.1111/j.1365-313X.2007.03326.x
Marcil, A., Dumontier, E., Chamberland, M., Camper, S. A., & Drouin, J. (2003). Pitx1 and Pitx2 are required for development of hindlimb buds. Development, 130(1), 45-55. https://doi.org/10.1242/dev.00192
McPherron, A. C., Huynh, T. V., & Lee, S. J. (2009). Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol, 9, 24. https://doi.org/10.1186/1471-213X-9-24
Minguillon, C., Gibson-Brown, J. J., & Logan, M. P. (2009). Tbx4/5 gene duplication and the origin of vertebrate paired appendages. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21726-21730. https://doi.org/10.1073/pnas.0910153106
Moriyama, Y., Pratiwi, H. M., Ueda, S., & Tanaka, M. (2019). Localization of beta-Catenin and Islet in the Pelvic Fin Field in Zebrafish. Zoological Science, 36(5), 365-371. https://doi.org/10.2108/zs180185
Mosimann, C., Puller, A. C., Lawson, K. L., Tschopp, P., Amsterdam, A., & Zon, L. I. (2013). Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system. Developmental Dynamics, 242(8), 949-963. https://doi.org/10.1002/dvdy.23989
Nakatani, Y., Shingate, P., Ravi, V., Pillai, N. E., Prasad, A., McLysaght, A., & Venkatesh, B. (2021). Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun, 12(1), 4489. https://doi.org/10.1038/s41467-021-24573-z
O'Neill, P., McCole, R. B., & Baker, C. V. (2007). A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol, 304(1), 156-181. https://doi.org/10.1016/j.ydbio.2006.12.029
Onimaru, K., Motone, F., Kiyatake, I., Nishida, K., & Kuraku, S. (2018). A staging table for the embryonic development of the brownbanded bamboo shark (Chiloscyllium punctatum). Dev Dyn, 247(5), 712-723. https://doi.org/10.1002/dvdy.24623
Papadogiannis, V., Pennati, A., Parker, H. J., Rothbacher, U., Patthey, C., Bronner, M. E., & Shimeld, S. M. (2022). Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature, 605(7911), 701-705. https://doi.org/10.1038/s41586-022-04742-w
Prummel, K. D., Nieuwenhuize, S., & Mosimann, C. (2020). The lateral plate mesoderm. Development, 147(12). https://doi.org/10.1242/dev.175059
Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457(7231), 818-823. https://doi.org/10.1038/nature07891
Simakov, O., Marletaz, F., Yue, J. X., O'Connell, B., Jenkins, J., Brandt, A., Calef, R., Tung, C. H., Huang, T. K., Schmutz, J., Satoh, N., Yu, J. K., Putnam, N. H., Green, R. E., & Rokhsar, D. S. (2020). Deeply conserved synteny resolves early events in vertebrate evolution. Nature Ecology & Evolution, 4(6), 820-830. https://doi.org/10.1038/s41559-020-1156-z
Stolfi, A., Ryan, K., Meinertzhagen, I. A., & Christiaen, L. (2015). Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature, 527(7578), 371-374. https://doi.org/10.1038/nature15758
Szeto, D. P., Rodriguez-Esteban, C., Ryan, A. K., O'Connell, S. M., Liu, F., Kioussi, C., Gleiberman, A. S., Izpisua-Belmonte, J. C., & Rosenfeld, M. G. (1999). Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev, 13(4), 484-494. https://doi.org/10.1101/gad.13.4.484
Tahara, N., Akiyama, R., Theisen, J. W. M., Kawakami, H., Wong, J., Garry, D. J., & Kawakami, Y. (2018). Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Dev Biol, 434(1), 74-83. https://doi.org/10.1016/j.ydbio.2017.11.013
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
Tanaka, M., Munsterberg, A., Anderson, W. G., Prescott, A. R., Hazon, N., & Tickle, C. (2002). Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature, 416(6880), 527-531. https://doi.org/10.1038/416527a
Thaler, J. P., Lee, S. K., Jurata, L. W., Gill, G. N., & Pfaff, S. L. (2002). LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell, 110(2), 237-249. https://doi.org/Doi 10.1016/S0092-8674(02)00823-1
Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols, 3(1), 59-69. https://doi.org/10.1038/nprot.2007.514
True, J. R., & Haag, E. S. (2001). Developmental system drift and flexibility in evolutionary trajectories. Evolution & Development, 3(2), 109-119. https://doi.org/10.1046/j.1525-142x.2001.003002109.x
Wong, E. S., Zheng, D., Tan, S. Z., Bower, N. L., Garside, V., Vanwalleghem, G., Gaiti, F., Scott, E., Hogan, B. M., Kikuchi, K., McGlinn, E., Francois, M., & Degnan, B. M. (2020). Deep conservation of the enhancer regulatory code in animals. Science, 370(6517). https://doi.org/10.1126/science.aax8137
Yang, L., Cai, C. L., Lin, L., Qyang, Y., Chung, C., Monteiro, R. M., Mummery, C. L., Fishman, G. I., Cogen, A., & Evans, S. (2006). Isl1Cre reveals a common Bmp pathway in heart and limb development. Development, 133(8), 1575-1585. https://doi.org/10.1242/dev.02322
Zhang, X., Zhang, Z., Zhao, Q., & Lou, X. (2020). Rapid and Efficient Live Zebrafish Embryo Genotyping. Zebrafish, 17(1), 56-58. https://doi.org/10.1089/zeb.2019.1796
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88833-
dc.description.abstract脊椎動物成對附肢的起源和演化是演化發育生物學中一個長久存在的問題。最近的化石證據發現有頷類祖先具有一個允許成對側鰭發育的「鰭潛能區」,而此區域在演化過程被局限演化出現存有頷類動物單基底的側肢。我試圖通過研究成對後肢發育過程的保守轉錄因子來了解鰭潛能區的分子組成。我針對有頷類演化支動物取樣,在不同物種的腹鰭中皆發現了Islet同源基因的保守表達,並確定了一個名為CR2的保守增強子可調控此基因表達。我同時證明在斑馬魚胚中過度表達isl1可在少數個體誘導出一個類似鰭的結構,此類鰭構造可表達數個鰭的標誌基因,這表明了isl1足以誘導鰭的發育。因此我假設祖先的「鰭潛能區」可能是由Islet同源基因所組成,並受到其增強子CR2的調控,而增強子序列的改變可能成為單基底鰭演化的基礎。zh_TW
dc.description.abstractThe origin and evolution of vertebrate paired appendages is a long-standing question in evolutionary developmental biology. Recent fossil discoveries indicate the presence of an ancestral “zone of fin competence” where paired lateral fins emerge, and the subsequent restriction of this zone led to a monobasal fin seen in extant gnathostomes. I sought to identify the molecular components of the zone of fin competence by examining the conserved factors in paired pelvic appendage development. I sampled the gnathostome clade, found a conserved expression of Islet orthologs in the pelvic fin, and identified a conserved enhancer CR2 driving such expression. I also show that overexpression of isl1 in zebrafish embryos induces outgrowth of a fin-like structure expressing several fin marker genes, suggesting the sufficiency of isl1 to initiate a fin program. I propose that the ancestral “zone of fin competence” is established by Islet genes, which are regulated by the enhancer CR2. Modification to the enhancer may underlie the evolution of monobasal fins.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:58:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:58:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
中文摘要 iii
Abstract iv
Introduction 1
Materials and Methods 6
Animals 6
cDNA sample preparation and quantitative polymerase chain reaction (qPCR) 7
Genomic DNA collection and genotyping 7
Whole-mount in situ hybridization (WISH) 8
Phylogenetic Analysis 10
Enhancer identification 11
Microinjection 12
isl1 overexpression by heat shock 13
Transgenic Assays 13
CRISPR/Cas 14
Synteny map 15
Results 16
Islet orthologs are expressed in the developing pelvic appendages of gnathostomes. 16
Identification of enhancers regulating Islet gene expression 19
Generation of CR2 mutant fish 22
Functional validation of Isl1 activity 23
CR2 transcription factor binding motif 24
Discussion 28
Perspectives and future studies 32
Comparison between zebrafish and lamprey isl2a 32
On the chordate homolog of the cranial sensory ganglia 33
ISL1 and ISL2 complementarity 34
Lack of CR2 homology beyond gnathostomes 34
References 36
Tables 45
Table 1. List of primers used 45
Figures 48
-
dc.language.isoen-
dc.subject成對附肢zh_TW
dc.subjectIslet基因zh_TW
dc.subject演化zh_TW
dc.subject有頷類zh_TW
dc.subject鰭潛能區zh_TW
dc.subjectEvolutionen
dc.subjectIslet geneen
dc.subjectGnathostomesen
dc.subjectPaired appendagesen
dc.subjectZone of fin competenceen
dc.titleIslet基因調節序列的演化與脊椎動物成對的鰭起源有關zh_TW
dc.titleEvolution of Islet Gene Regulation is Linked to the Origin of Paired Fins in Vertebratesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇怡璇;游智凱;郭典翰;黃貞祥zh_TW
dc.contributor.oralexamcommitteeYi-Hsien Su;Jr-Kai Yu;Dian-Han Kuo;Chen Siang Ngen
dc.subject.keyword成對附肢,演化,Islet基因,有頷類,鰭潛能區,zh_TW
dc.subject.keywordPaired appendages,Evolution,Islet gene,Gnathostomes,Zone of fin competence,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202302434-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved