Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫在弘zh_TW
dc.contributor.advisorTzai-Hung Wenen
dc.contributor.author夏天恩zh_TW
dc.contributor.authorTian-En Xiaen
dc.date.accessioned2023-08-15T17:57:30Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAhn, Y., Kowada, T., Tsukaguchi, H., & Vandebona, U. (2017) . Estimation of passenger flow for planning and management of railway stations. Transportation Research Procedia, 25, 315-330.
Ali, A., Kim, J., & Lee, S. (2016) . Travel behavior analysis using smart card data. KSCE Journal of Civil Engineering, 20 (4) , 1532-1539.
Babu Sam, D., Surya, S., & Venkatesh Babu, R. (2017). Switching convolutional neural network for crowd counting. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5744-5752).
Bazzan, A. L., & Klügl, F. (2014). A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review, 29(3), 375-403.
Bluetooth Special Interest Group (2022) . Understanding Bluetooth Range. https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/
Bozyiğit, A., Alankuş, G., & Nasiboğlu, E. (2017, October) . Public transport route planning: Modified dijkstra's algorithm. In 2017 International Conference on Computer Science and Engineering (UBMK) (pp. 502-505) . IEEE.
Browne, A., St-Onge Ahmad, S., Beck, C. R., & Nguyen-Van-Tam, J. S. (2016) . The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review. Journal of travel medicine, 23 (1) , tav002.
Cao, X., Cong, G., & Jensen, C. S. (2010) . Mining significant semantic locations from GPS data. Proceedings of the VLDB Endowment, 3 (1-2) , 1009-1020.
Ceapa, I., Smith, C., & Capra, L. (2012, August) . Avoiding the crowds: understanding tube station congestion patterns from trip data. In Proceedings of the ACM SIGKDD international workshop on urban computing (pp. 134-141) .
Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H. J., ... & Reinap, M. (2020) . Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The lancet, 395 (10242) , 1973-1987.
Danon, L., House, T. A., Read, J. M., & Keeling, M. J. (2012) . Social encounter networks: collective properties and disease transmission. Journal of The Royal Society Interface, 9 (76) , 2826-2833.
Davidich, M., Geiss, F., Mayer, H. G., Pfaffinger, A., & Royer, C. (2013). Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples. Transportation Research Part C: Emerging Technologies, 37, 210-222.
Department for Transport & The Rt Hon Grant Shapps MP (2020) . Guidance for safer travel and safer transport operations during the next phase of the coronavirus (COVID-19) pandemic.https://www.gov.uk/government/news/new-guidance-published-to-ensure-transport-network-is-safe-for-those-who-need-to-use-it
Ding, H., Di, Y., Zheng, X., Liu, K., Zhang, W., & Zheng, L. (2021) . Passenger arrival distribution model and riding guidance on an urban rail transit platform. Physica A: Statistical Mechanics and its Applications, 571, 125847.
Dong, H., Ma, S., Jia, N., & Tian, J. (2021) .Transport Policy, 101, 81-88.
Edmunds, W. J., O'callaghan, C. J., & Nokes, D. J. (1997) . Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264 (1384) , 949-957.
EMG – Transmission Group (2021) . COVID-19 Risk by Occupation and Workplace.https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/965094/s1100-covid-19-risk-by-occupation-workplace.pdf
Fournet, J., & Barrat, A. (2014) . Contact patterns among high school students. PloS one, 9 (9) , e107878.
Gerhold, L. (2020) . COVID-19: risk perception and coping strategies.
Gkiotsalitis, K., & Cats, O. (2021). Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions. Transport Reviews, 41(3), 374-392.
Goscé, L., & Johansson, A. (2018). Analysing the link between public transport use and airborne transmission: mobility and contagion in the London underground. Environmental Health, 17(1), 1-11.
Hajdu, L., Bóta, A., Krész, M., Khani, A., & Gardner, L. M. (2020) . Discovering the hidden community structure of public transportation networks. Networks and Spatial Economics, 20 (1) , 209-231.
Hall, E. T. (1966) The Hidden Diemension, New York.
Hassanpour, S., & Rassafi, A. A. (2021) . Agent-based simulation for pedestrian evacuation behaviour using the affordance concept. KSCE Journal of Civil Engineering, 25 (4) , 1433-1445.
He, L., Nassir, N., Trépanier, M., & Hickman, M. (2015) . Validating and calibrating a destination estimation algorithm for public transport smart card fare collection systems (Vol. 52, pp. 1-11) . CIRRELT.
He, Y., Zhao, Y., & Tsui, K. L. (2018, November). An analysis of factors influencing metro station ridership: Insights from taipei metro. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 1598-1603). IEEE.
Health Matter (2020)。 How to Travel Safely During the Coronavirus Outbreak?https://healthmatters.nyp.org/how-to-travel-safely-during-the-coronavirus-outbreak-in-chinese/
Hörcher, D., Singh, R., & Graham, D. J. (2022) . Social distancing in public transport: mobilising new technologies for demand management under the Covid-19 crisis. Transportation, 49 (2) , 735-764.
Huang, J., Albazrqaoe, W., & Xing, G. (2014, April) . BlueID: A practical system for Bluetooth device identification. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications (pp. 2849-2857) . IEEE.
IMPINJ (2022) . Types of RFID Systems https://www.impinj.com/products/technology/how-can-rfid-systems-be-categorized
Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J. F., & Van den Broeck, W. (2011) . What's in a crowd? Analysis of face-to-face behavioral networks. Journal of theoretical biology, 271 (1) , 166-180.
Jang, W. (2010) . Travel time and transfer analysis using transit smart card data. Transportation research record, 2144 (1) , 142-149.
Jones, N. R., Qureshi, Z. U., Temple, R. J., Larwood, J. P., Greenhalgh, T., & Bourouiba, L. (2020) . Two metres or one: what is the evidence for physical distancing in covid-19?. bmj, 370.
Justel, A., Peña, D., & Zamar, R. (1997) . A multivariate Kolmogorov-Smirnov test of goodness of fit. Statistics & probability letters, 35 (3) , 251-259.
Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2012). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20, 183-230.
Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95.
Lee, J. S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I., ... & Parker, D. C. (2015). The complexities of agent-based modeling output analysis. Journal of Artificial Societies and Social Simulation, 18(4).
Li, C. Y., Yang, R. Y., & Xu, G. M. (2019). Impacts of group behavior on boarding process at the platform of high speed railway station. Physica A: Statistical Mechanics and its Applications, 535, 122247.
Li, W., Yan, X., Li, X., & Yang, J. (2020) . Estimate passengers’ walking and waiting time in metro station using smart card data (scd) . IEEE Access, 8, 11074-11083.
Liu, K., Yin, L., Ma, Z., Zhang, F., & Zhao, J. (2020) . Investigating physical encounters of individuals in urban metro systems with large-scale smart card data. Physica A: Statistical Mechanics and its Applications, 545, 123398.
Lovrić, M., Li, T., & Vervest, P. (2013) . Sustainable revenue management: A smart card enabled agent-based modeling approach. Decision Support Systems, 54 (4) , 1587-1601.
Luo, K., Lei, Z., Hai, Z., Xiao, S., Rui, J., Yang, H., ... & Chen, T. (2020, October) . Transmission of SARS-CoV-2 in public transportation vehicles: a case study in Hunan Province, China. In Open forum infectious diseases (Vol. 7, No. 10, p. ofaa430) . US: Oxford University Press.
Ma, X., Wu, Y. J., Wang, Y., Chen, F., & Liu, J. (2013) . Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1-12.
Ma, Y., Lee, E. W. M., & Yuen, R. K. K. (2017). Dual effects of pedestrian density on emergency evacuation. Physics Letters A, 381(5), 435-439.
Mastrandrea, R., Fournet, J., & Barrat, A. (2015) . Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one, 10 (9) , e0136497.
Mikolajczyk, R. T., Akmatov, M. K., Rastin, S., & Kretzschmar, M. (2008) . Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiology & Infection, 136 (6) , 813-822.
Mohamed, K., Côme, E., Oukhellou, L., & Verleysen, M. (2016). Clustering smart card data for urban mobility analysis. IEEE Transactions on intelligent transportation systems, 18(3), 712-728.
Mohr, O., Askar, M., Schink, S., Eckmanns, T., Krause, G., & Poggensee, G. (2012) . Evidence for airborne infectious disease transmission in public ground transport–a literature review. Eurosurveillance, 17 (35) , 20255.
Naghdi, S., & O’Keefe, K. (2020) . Detecting and correcting for human obstacles in BLE trilateration using artificial intelligence. Sensors, 20 (5) , 1350.
Nguyen, C. T., Saputra, Y. M., Van Huynh, N., Nguyen, N. T., Khoa, T. V., Tuan, B. M., ... & Ottersten, B. (2020) . Enabling and emerging technologies for social distancing: a comprehensive survey and open problems. arXiv preprint arXiv:2005.02816.
Nishiura, H., Oshitani, H., Kobayashi, T., Saito, T., Sunagawa, T., Matsui, T., ... & Suzuki, M. (2020) . Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19) . MedRxiv.
Ottomanelli, M., Iannucci, G., & Sassanelli, D. (2012) . Simplified model for pedestrian–vehicle interactions at road crossings based on discrete events system. Transportation research record, 2316 (1) , 58-68.
Pelletier, M. P., Trépanier, M., & Morency, C. (2011) . Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19 (4) , 557-568.
Peng, D. U., Chao, L., & Zhili, L. I. U. (2009) . Walking time modeling on transfer pedestrians in subway passages. Journal of Transportation Systems Engineering and Information Technology, 9 (4) , 103-109.\
Prather, K. A., Wang, C. C., & Schooley, R. T. (2020). Reducing transmission of SARS-CoV-2. Science, 368(6498), 1422-1424.
Psacharopoulos, G., Collis, V., Patrinos, H. A., & Vegas, E. (2020) . Lost wages: The COVID-19 cost of school closures. Available at SSRN 3682160. relative to before the pandemic?
Riascos, A. P., & Mateos, J. L. (2017) . Emergence of encounter networks due to human mobility. PloS one, 12 (10) , e0184532.
Sang, J., Wu, W., Luo, H., Xiang, H., Zhang, Q., Hu, H., & Xia, X. (2019). Improved crowd counting method based on scale-adaptive convolutional neural network. IEEE Access, 7, 24411-24419.
Schmaranzer, D., Braune, R., & Doerner, K. F. (2016, December) . A discrete event simulation model of the Viennese subway system for decision support and strategic planning. In 2016 Winter Simulation Conference (WSC) (pp. 2406-2417) . IEEE.
Seaborn, C., Attanucci, J., & Wilson, N. H. (2009) . Analyzing multimodal public transport journeys in London with smart card fare payment data. Transportation research record, 2121 (1) , 55-62.
Shen, Y., Li, C., Dong, H., Wang, Z., Martinez, L., Sun, Z., ... & Xu, G. (2020) . Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China. JAMA internal medicine, 180 (12) , 1665-1671.
Sobral, T., Galvão, T., & Borges, J. (2019) . Visualization of urban mobility data from intelligent transportation systems. Sensors, 19 (2) , 332.
Spaccapietra et al. (2008) conceptualize trajectories semantically as having a defined beginning and end time, and as divided into movement segments by stops – pauses in movement – identified in accordance with the scale of analysis.
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., ... & Vanhems, P. (2011) . Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC medicine, 9 (1) , 1-15.
Stradling, S., Carreno, M., Rye, T., & Noble, A. (2007) . Passenger perceptions and the ideal urban bus journey experience. Transport policy, 14 (4) , 283-292.
Sun, L., Axhausen, K. W., Lee, D. H., & Huang, X. (2013) . Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110 (34) , 13774-13779.
Sun, L., Lee, D. H., Erath, A., & Huang, X. (2012, August). Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system. In Proceedings of the ACM SIGKDD international workshop on urban computing (pp. 142-148).
Tang, T. Q., Shao, Y. X., Chen, L., & Shang, H. Y. (2017) . Modeling passengers’ boarding behavior at the platform of high speed railway station. Journal of Advanced Transportation, 2017.
Terrill, M. 2020. "Shame about the cars, but Premier is right to be cautious about public transport." Sydney Morning Herald, May 19, 2020. https://www.smh.com.au/politics/nsw/shame-about-the-cars-but-premier-isright-to-be-cautious-about-public-transport-20200518-p54txr.html.
Tirachini, A., & Cats, O. (2020) . COVID-19 and public transportation: Current assessment, prospects, and research needs. Journal of Public Transportation, 22 (1) , 1.
Troko, J., Myles, P., Gibson, J., Hashim, A., Enstone, J., Kingdon, S., ... & Van-Tam, J. N. (2011) . Is public transport a risk factor for acute respiratory infection?. BMC infectious diseases, 11 (1) , 1-6.
Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., ... & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of medicine, 382(16), 1564-1567.
Vanhems, P., Barrat, A., Cattuto, C., Pinton, J. F., Khanafer, N., Régis, C., ... & Voirin, N. (2013) . Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one, 8 (9) , e73970.
Waga, K., Tabarcea, A., Chen, M., & Fränti, P. (2012, October) . Detecting movement type by route segmentation and classification. In 8th International Conference on Collaborative computing: networking, applications and worksharing (CollaborateCom) (pp. 508-513) . IEEE.
Wang, J., Guo, J., Wu, X. M., & Guo, X. H. (2020). Study on intelligent algorithm of guide partition for emergency evacuation of a subway station. IET Intelligent Transport Systems, 14(11), 1440-1446.
Wang, Y., Wang, Y., Chen, Y., & Qin, Q. (2020) . Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. Journal of medical virology, 92 (6) , 568-576.
Wu, Y. Y., Rong, J., Liu, X. M., & Wei, Z. H. (2012) . Passengers distribution in urban rail transit platform before vehicle arrival. Beijing Gongye Daxue Xuebao (Journal of Beijing University of Technology) , 38 (6) , 875-879.
Xu, X. Y., Liu, J., Li, H. Y., & Hu, J. Q. (2014) . Analysis of subway station capacity with the use of queueing theory. Transportation research part C: emerging technologies, 38, 28-43.
Yin, L., & Shaw, S. L. (2015) . Exploring space–time paths in physical and social closeness spaces: a space–time GIS approach. International Journal of Geographical Information Science, 29 (5) , 742-761.
Yu, H. (2006) . Spatio-temporal GIS design for exploring interactions of human activities. Cartography and Geographic Information Science, 33 (1) , 3-19.
Zeng, W., Fu, C. W., Arisona, S. M., Erath, A., & Qu, H. (2014) . Visualizing mobility of public transportation system. IEEE transactions on visualization and computer graphics, 20 (12) , 1833-1842.
Zhang, F., Jin, B., Ge, T., Ji, Q., & Cui, Y. (2016, October) . Who are my familiar strangers? Revealing hidden friend relations and common interests from smart card data. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 619-628) .
Zhang, F., Zhao, J., Tian, C., Xu, C., Liu, X., & Rao, L. (2015). Spatiotemporal segmentation of metro trips using smart card data. IEEE Transactions on Vehicular Technology, 65(3), 1137-1149.
Zhang, L., Shi, M., & Chen, Q. (2018, March). Crowd counting via scale-adaptive convolutional neural network. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1113-1121). IEEE.
Zhang, Q., Han, B., & Li, D. (2008) . Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations. Transportation Research Part C: Emerging Technologies, 16 (5) , 635-649.
Zhao, J., Rahbee, A., & Wilson, N. H. (2007). Estimating a rail passenger trip origin‐destination matrix using automatic data collection systems. Computer‐Aided Civil and Infrastructure Engineering, 22(5), 376-387.
Zhou, J., Yang, Y., Li, Y., & Maurer, V. (2018). Someone like you: Visualising co-presences of metro riders in Beijing. Environment and Planning A: Economy and Space, 50(4), 752-755.
Zhou, M., Dong, H., Wang, X., Hu, X., & Ge, S. (2020) . Modeling and simulation of crowd evacuation with signs at subway platform: A case study of beijing subway stations. IEEE Transactions on Intelligent Transportation Systems, 23 (2) , 1492-1504.
Zhou, M., Ge, S., Liu, J., Dong, H., & Wang, F. Y. (2020) . Field observation and analysis of waiting passengers at subway platform—A case study of Beijing subway stations. Physica A: Statistical Mechanics and Its Applications, 556, 124779.
Zhu, L., Holden, J. R., & Gonder, J. D. (2017) . Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data. Transportation Research Record, 2645 (1) , 67-75.
Zou, Q., Fernandes, D. S., & Chen, S. (2021) . Agent-based evacuation simulation from subway train and platform. Journal of Transportation Safety & Security, 13 (3) , 318-339.
中央氣象局 (2021) 2021年臺北氣象站逐日雨量資料https://www.cwb.gov.tw/V8/C/D/DailyPrecipitation.html
台北大眾捷運股份有限公司 (2020) 路線及班距https://www.metro.taipei/cp.aspx?n=EAD981369A065968&s=C58C8C2C6419810F
台北大眾捷運股份有限公司 (2023) 路網簡介https://www.metro.taipei/cp.aspx?n=CCF30033E6ED8008
台北市政府捷運工程局 (2019)。 常見問答-機電設計>台北捷運系統之車廂尺寸為何? https://www.dorts.gov.taipei/News_Content.aspx?n=2A66A485FACB0D5B&sms=87415A8B9CE81B16&s=64BA8365B018394B
自由時報 (2021)。 疫情衝擊 台北捷運離峰、假日班距二度拉長6~10分鐘https://news.ltn.com.tw/news/life/breakingnews/3549469
經濟日報 (2022)。 悠遊卡發行滿20年 流通卡數逾9400萬張https://money.udn.com/money/story/5613/6541834
聯合新聞 (2022)。 北捷增3線可查擁擠度 忠孝復興站設導引光條https://udn.com/news/story/7266/6407275
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88829-
dc.description.abstract流行病容易在密閉且擁擠的大眾運輸系統上傳播,其中轉乘站更是高風險區域,因為乘客在這裡會與來自各地的人群接觸,進而提高感染風險。而傳播擁擠資訊是一種降低感染風險的方式,我們已經可以透過網路地圖或運營商提供的擁擠資訊來避開高風險車廂或車站,但這些資訊未能呈現更詳細的站內人際接觸特性。
先前的研究已利用智慧卡資料探索乘客在車廂內的共存人數,並將其視為潛在接觸人數,然而對於車站空間的接觸特性,目前仍未得到充分的討論。因此,本研究的目的為探索乘客在轉乘站月台人際接觸特性的時空分布,為達成此目的,本研究首先將智慧卡資料結合時間地理學 (Time geography) 的概念,估算乘客在不同時段於轉乘站月台的共存人數與擁擠密度,以初步評估接觸特性。之外,為了更詳細探索乘客在月台的接觸特性,本研究進一步運用代理人基模型 (Agent-based Model, ABM) 來模擬乘客候車位置的空間分布以計算近距離接觸人數,並透過現場觀察來確認模型的有效性。綜合上述,本研究的方法有助於更詳細的了解捷運轉乘站月台的人際接觸特性,並可以作為大眾運輸運營商實行擁擠管理或是公共衛生機關實施防疫措施時的參考。
zh_TW
dc.description.abstractEpidemics tend to spread easily on enclosed and crowded public transportation systems, with transfer stations being particularly high-risk areas. This is because passengers at these locations meet people from all over, thereby increasing the risk of infection. One way to reduce this risk is through the dissemination of congestion information. We can already avoid high-risk areas by using online maps or operators' congestion information. However, these resources do not provide detailed information about the interpersonal contact characteristics within the stations.
Previous studies have used smart card data to analyze the co-occurrence of passengers in carriages as potential contacts. However, the characteristics of contact within station spaces have not been extensively discussed. Hence, the aim of this study is to explore the spatio-temporal distribution of interpersonal contact characteristics on transfer station platforms. To achieve this aim, the study merges smart card data with the concept of Time Geography, estimating the number and density of passengers on transfer platforms at different times. This serves as a preliminary assessment of contact characteristics. Furthermore, to delve into the contact characteristics on platforms more thoroughly, this study utilizes an Agent-based Model (ABM) to simulate the spatial distribution of passenger waiting positions, calculating the number of close contacts. The effectiveness of the model is then confirmed through field observations. In conclusion, this study's method enhances the understanding of interpersonal contact characteristics on subway transfer platforms. It serves as a guide for transit operators in managing congestion and health agencies in implementing preventive measures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:57:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:57:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 vi
英文摘要 vii
第一章 研究動機與目的 1
第一節 研究動機 1
第二節 研究目的 4
第二章 文獻回顧 6
第一節 取得接觸資訊的方法 6
第二節 使用智慧卡識別大眾運輸內的接觸模式 8
第三節 識別轉乘人流的方法 10
第四節 候車行為模擬 11
第五節 小結 12
第三章 研究方法 14
第一節 研究範疇 14
第二節 研究資料 16
第三節 研究架構 17
第四節 使用智慧卡推估共存人數與擁擠密度 19
第五節 使用ABM模擬接觸特性 29
第四章 研究結果與討論 39
第一節 乘客共存人數與擁擠程度評估 39
第二節 模型設計有效性評估 44
第三節 考量不同乘客偏好下的接觸人數 46
第四節 使用ABM模擬接觸特性的優勢 52
第五節 研究限制 52
第五章 結論 54
第六章 參考文獻 55
附錄 61
附錄一、尖峰時段各路線方向組合步行時間敘述統計與對數常態分布的KS檢定結果 61
附錄二、離峰時段各路線方向組合步行時間敘述統計與對數常態分布的KS檢定結果 66
附錄三、步行時間分群與擬合結果 72
附錄四、分群後的步行時間敘述統計與對數常態分布的KS檢定結果 73
附錄五、進站人數的泊松分布擬合與卡方檢定結果 74
附錄六、每秒平均轉乘乘客數 75
附錄七、現場觀察與模擬紀錄的候車人數 76
-
dc.language.isozh_TW-
dc.subject智慧卡zh_TW
dc.subject時間地理學zh_TW
dc.subject代理人基模型zh_TW
dc.subjectAgent-Based Modelen
dc.subjectSmart Carden
dc.subjectTime Geographyen
dc.title模擬捷運轉乘站候車月台的人際接觸時空分布:利用智慧卡資料與代理人模式zh_TW
dc.titleSimulating Spatiotemporal Patterns of Interpersonal Contacts in the MRT Transfer Platform: Using Smart Card Data and Agent-based Modelingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林楨家;許聿廷zh_TW
dc.contributor.oralexamcommitteeJen-Jia Lin;Yu-Ting Hsuen
dc.subject.keyword智慧卡,時間地理學,代理人基模型,zh_TW
dc.subject.keywordSmart Card,Time Geography,Agent-Based Model,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302907-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved