請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88827
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖國偉 | zh_TW |
dc.contributor.advisor | Kuo-Wei Liao | en |
dc.contributor.author | 戴浚哲 | zh_TW |
dc.contributor.author | Chun-Che Tai | en |
dc.date.accessioned | 2023-08-15T17:56:59Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | 1. 王怡萍、邱祈榮(2017),「台灣森林臺灣森林生態系服務價值估算初探」,台灣林業雙月刊,43(1),p3-11
2. 王楨智(2022),「氣泡與水泡工法對於減緩壩體下游沖刷之探討」,國立臺灣大學碩士論文。 3. 行政院農業委員會 (2017),「水土保持手冊」,行政院農業委員會水土保持局。 4. 行政院農業委員會水土保持局(2014),「保力溪坡地保育治理調查規劃」。 5. 行政院農業委員會水土保持局台南分局(2023),「111年臺南分局集水區治理規劃導入NbS調適研究計畫」 6. 柯佑霖、黃文政(2016),「以InVEST模式評估水庫集水區農業非點源污染之防治效益」,中華水土保持學報,48 (2),p1733–1748。 7. 張喬亞(2013),「整合HEC-RAS與FLO-2D應用於典寶溪流域之淹水模擬」,國立成功大學碩士論文。 8. 陳柏宇(2019),「事件最大數列與混合分布在降雨頻率分析之應用」,國立臺灣大學碩士論文。 9. 陳學寬(2020),「五溝水湧泉濕地生態防減災之評估」,國立成功大學碩士論文。 10. 經濟部水利署水利規劃試驗所(2019),「連結歐盟 NBS 計畫及共同開發評估模式(108-110)(1/3)」。 11. 經濟部水利署第九河川局(2020),「鱉溪河川復育方案」。 12. 詹為巽、鄭可風、林俊成、邱祈榮(2020)「運用 InVEST 模擬土地利用變化對生態系服務效益之影響-以蓮華池地區為例」,中華林學季刊,53(1),p1-17。 13. 詹勳全、邱亮鈞、彭振捷、張承遠、郭炳榮(2017)「應用二維水理輸砂模式評估野溪清疏成效之研究」,中華水土保持學報,48(3),p113-126。 14. 盧惠生(1999),「畢祿溪地區不同紀錄年限24小時降雨延時之設計雨型歷線」,中華水土保持學報,30(4),p289-298. 15. 蕭戎雯(2013),「不同單元尺度對土地利用及生態系統服務模擬模擬之影響-以大屯溪流域為例」,國立臺灣大學碩士論文。 16. 賴茂修(2022),「應用洪災指標於二維 HEC-RAS 及 3Di 模式之評估」,國立臺灣大學碩士論文。 17. 賴桂文(2016),「HEC-RAS水理模式2D模組介紹及應用」。 18. 蘇語乾(2021),「應用 UAV 空拍技術及 HEC-RAS 2D 水理模式於河川高灘地植生管理」,國立臺灣大學碩士論文。 19. Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. "Crop evapotranspiration. Guidelines for computing crop water requirements." FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy. 20. Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., & Sanchez, A. (2019). Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of environmental management, 239, 244-254. 21. Bauduceau, N., Berry, P., Cecchi, C., Elmqvist, T., Fernandez, M., Hartig, T., ... & Tack, J. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the horizon 2020 expert group on'nature-based solutions and re-naturing cities'. 22. Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological engineering, 36(4), 351-360. 23. Brunner, G. W. (2016). HEC-RAS river analysis system 2D modeling user’s manual. US Army Corps of Engineers—Hydrologic Engineering Center, 1-171. 24. Brunner, G. W. (2016). HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0. US Army Corps of Engineers–Hydrologic Engineering Center, 547. 25. Christopher Goodell. (2014). Breaking the HEC-RAS Code - A User's Guide to Automating HEC-RAS. Portland: h2ls 26. Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-2036. 27. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253-260. 28. Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Structural Safety, 33(2), 145-154. 29. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. 30. Ekins, P., Simon, S., Deutsch, L., Folke, C., & De Groot, R. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological economics, 44(2-3), 165-185. 31. Fan, J. C., Chang, S. C., Liao, K. W., Guo, J. J., Liu, C. H., Chang, Y. C., ... & Yang, C. H. (2018). The impact of physiographic factors upon the probability of slides occurrence: a case study from the Kaoping River Basin, Taiwan. Journal of the Chinese Institute of Engineers, 41(5), 419-429. 32. Fu, B. P. (1981), On the calculation of the evaporation from land surface (in Chinese), Sci. Atmos. Sin., 5, 23– 31. 33. Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40, 25-35. 34. Goldstein, A., Neyland, E., & Bodnar, E. (2015). Converging at the crossroads State of forest carbon finance 2015. Forest Trends’ Ecosystem Marketplace. Washington, DC. 35. John Thedy, Kuo-Wei Liao. (2023). Adaptive Kriging Adopting PSO with Hollow-Hypersphere Space in Structural Reliability Assessment. 36. Millennium Ecosystem Assessment. (2003). Millennium ecosystem assessment. Ecosystems. 37. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: current state and trends. 38. Natural Capital Project. (2023). InVEST 3.13.0. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences. 39. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., ... & Shaw, M. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11. 40. Nelson, G. C., Bennett, E., Berhe, A. A., Cassman, K., DeFries, R., Dietz, T., ... & Zurek, M. (2006). Anthropogenic drivers of ecosystem change: an overview. Ecology and Society, 11(2). 41. Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M., ... & Lopez-Gunn, E. (2020). Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area. Natural Hazards and Earth System Sciences, 20(1), 243-270. 42. Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757-773. 43. Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., Briggs, P. R. (2004) A rational function approach for estimating mean annual evapotranspiration. Water Resources Research. Vol. 40 (2) | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88827 | - |
dc.description.abstract | 近年來能調適地應對社會挑戰,同時提供人類福祉和生物多樣性效益的自然解方(Nature-based Solutions, NbS)逐漸受到重視,期望達到永續管理和恢復自然的集水區治理目標。然而相較於過去有明確規範的工程治理策略,自然解方需因地制宜,考慮不同流域的環境狀況,因此在治理效果與安全性方面有許多不確定因素,如何在工程治理與自然解方之間進行抉擇是現今環境治理所面臨的重要課題。本研究將利用保力溪作為研究對象,針對流域內易發生溢淹地區進行自然解方與工程治理策略規劃,以HEC-RAS 2D進行洪水模擬,評估兩種治理策略對淹水災害的影響。同時以InVEST分析碳吸存、產水量與水土保持三項生態系服務指標,期望歸納出自然解方與工程治理策略的優劣關係,幫助未來決策者進行更完善的治理規劃。
自然解方策略將利用中上游具有溢淹潛勢且較少人為使用的土地規劃為水砂溢淹區,使其達到減緩洪峰、降低淹水災害的效果,經模擬分析後,自然解方策略能有效減緩10、25、50年重現期之洪水災害,降低下游私有農地淹水面積達79.76%、46.03%、27.90%,且經可靠度分析後,自然解方能大幅降低20年重現期以下之洪水災害。此外,因規劃水砂溢淹區種植混合林,有效提升了碳吸存量22.53%與水土保持量70.16%,換算為效益價值約為37.49萬元與32.55萬元。 工程治理策略預計於中上游有溢淹潛勢的私有土地、道路或橋梁等保全對象周圍建設堤防與護岸等保護措施,能有效避免治理規劃區內發生淹水災害。此外,因將河岸建設為堤防與護岸等保護措施,具有增加河川基流量與保護河岸避免沖刷的效果。故提升了產水量20.30%與水土保持量73.06%,換算成效益價值約為21.02萬元與33.90萬元。 綜合分析來看,自然解方在淹水治理與碳吸存效益方面分別高於工程治理139萬元與161.70萬元,但在產水量與水土保持效益部分略低於工程治理25.61萬元與1.35萬元。同時,自然解方的工程成本估價低於工程治理達19.26萬元,整體評估後自然解方相較工程治理整體可多出約292.79萬元的效益價值,更適合於保力流域內規劃執行。 | zh_TW |
dc.description.abstract | In recent years, Nature-base Solutions (NbS) are gradually gaining attention. People believed that NbS can be used to solve disaster problems in catchment areas, achieve sustainability and restore natural environment. However, in contrast to conventional engineering solutions, NbS need to consider more environmental conditions, so there are many uncertainties about the effectiveness and safety of NbS. Therefore, how to choose between NbS and conventional engineering solutions is an important issue nowadays. In this study, we chose Baoli stream as the research subject to design the management strategies based on NbS or conventional engineering solutions. HEC-RAS 2D flood simulation was used to evaluate how the two management strategies would affect the flooded area respectively. InVEST model was used to analyze three ecosystem service indicators, including carbon sequestration, water yield and soil conservation. This research is expected to summarize the advantages and disadvantages of NbS and conventional engineering solutions.
The NbS is to design the flooded area in the upstream as flood buffer zone. So that it achieves the effect of mitigating flood peaks and reducing flood disasters. After simulation analysis, the NbS can effectively mitigate the flood peaks of 10, 25, and 50-year return period. It reduces the flooded area of downstream by 79.76%, 46.03%, and 27.90%. In addition, by planting forests in the flood buffer zone, the carbon sequestration and soil conservation were increased by 22.53% and 70.16%, respectively. The benefits of these translated to value is about 374.9 thousand NT dollars and 325.5 thousand NT dollars. The conventional engineering solution is to build levees and revetments in the upstream to protect private land, roads, and bridges from the flood. In addition, the riverbank levees and revetments have the effect of increasing the flow of water to irrigation and protecting the riverbank from scouring. As the result, the water yield was increased by 20.3% and the soil conservation was increased by 73.06%. The benefits of these translated to value is about 210.2 thousand NT dollars and 339.0 thousand NT dollars. In conclusion, the NbS strategy is higher than conventional engineering solution in terms of flooding reduction and carbon sequestration benefits by 1.39 million NT dollars and 1.617 million NT dollars respectively, but slightly lower than the engineered solution in terms of water yield and soil conservation benefits by 256.1 thousand NT dollars and 13.5 thousand NT dollars respectively. At the same time, the estimated project cost of NbS is lower than that of conventional engineering solution by 192.6 thousand NT dollars. After the comprehensive assessment, the NbS can generate an additional benefit of value about 2.979 million NT dollars, which is more suitable for the Baoli Basin. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:56:59Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:56:59Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xiv 符號說明表 xvi 第一章、緒論 1 1.1 研究動機 1 1.2 研究流程 2 1.3 論文架構 4 第二章、文獻回顧 5 2.1 保力溪之工程規劃 5 2.2 以自然為本的解決方案 5 2.3 二維水理模式分析 11 2.4 生態系服務價值 12 第三章、研究方法 14 3.1 研究區域 14 3.2 自然解方規劃 16 3.3 水理模式分析 17 3.4 治理策略風險與安全性評估 29 3.5 治理策略效益評估 36 第四章、結果與討論 46 4.1 模式驗證 46 4.2 溢淹結果分析 49 4.3 治理策略規劃 55 4.4 治理策略洪水模擬 81 4.5 治理策略生態系服務價值模擬 90 4.6 綜合效益評估 98 第五章、結論與建議 100 5.1 結論 100 5.2 建議 101 參考資料 103 附錄、NbS案例整理 108 | - |
dc.language.iso | zh_TW | - |
dc.title | 洪水災害調適策略之效益與安全性評估 -以屏東縣保力溪為例 | zh_TW |
dc.title | Benefit and Safety Assessment of Flood Hazard Adaptation Strategies in Baoli River Basin | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 范正成;李錦育 | zh_TW |
dc.contributor.oralexamcommittee | Jen-Chen Fan;Chin-Yu Lee | en |
dc.subject.keyword | 自然解方,水砂溢淹區,二維水理模式分析,生態系服務價值, | zh_TW |
dc.subject.keyword | Nature-based Solution (NbS),Flood Buffer Zone,Two Dimensional Hydraulic Simulation Model,Ecosystem Services Value, | en |
dc.relation.page | 129 | - |
dc.identifier.doi | 10.6342/NTU202303171 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物環境系統工程學系 | - |
dc.date.embargo-lift | 2025-08-07 | - |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2025-08-07 | 15.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。