請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88824完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章 | zh_TW |
| dc.contributor.advisor | Wen-Chang Chen | en |
| dc.contributor.author | 林家宇 | zh_TW |
| dc.contributor.author | Chia-Yu Lin | en |
| dc.date.accessioned | 2023-08-15T17:56:15Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-17 | - |
| dc.identifier.citation | 1 Iino, H.; Hanna, J.-i., Liquid crystalline organic semiconductors for organic transistor applications. Polym. J. 2017, 49 (1), 23-30.
2 Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R., Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater. 2004, 16 (23), 4436-4451. 3 Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J.; Toney, M. F., Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules 2005, 38 (8), 3312-3319. 4 Kim, J.-S.; Kim, J.-H.; Lee, W.; Yu, H.; Kim, H. J.; Song, I.; Shin, M.; Oh, J. H.; Jeong, U.; Kim, T.-S.; Kim, B. J., Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules 2015, 48 (13), 4339-4346. 5 Sekitani, T.; Someya, T., Stretchable, Large-area Organic Electronics. Adv. Mater. 2010, 22 (20), 2228-2246. 6 Rogers, J. A.; Someya, T.; Huang, Y., Materials and Mechanics for Stretchable Electronics. Science 2010, 327 (5973), 1603-1607. 7 Jeong, G. S.; Baek, D.-H.; Jung, H. C.; Song, J. H.; Moon, J. H.; Hong, S. W.; Kim, I. Y.; Lee, S.-H. J. N. c., Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat. Commun. 2012, 3 (1), 977. 8 Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6 (5), 296-301. 9 Lipomi, D. J.; Bao, Z., Stretchable and ultraflexible organic electronics. MRS Bull. 2017, 42 (2), 93-97. 10 Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T.-H.; Hwang, S.; Bao, Z., Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Adv. Mater. 2014, 26 (25), 4253-4259. 11 Savagatrup, S.; Chan, E.; Renteria-Garcia, S. M.; Printz, A. D.; Zaretski, A. V.; O'Connor, T. F.; Rodriquez, D.; Valle, E.; Lipomi, D. J., Plasticization of PEDOT:PSS by Common Additives for Mechanically Robust Organic Solar Cells and Wearable Sensors. Adv. Funct. Mater. 2015, 25 (3), 427-436. 12 Yang, Y.; Deng, H.; Fu, Q. J. M. C. F., Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4 (11), 3130-3152. 13 Khosla, A.; Shah, S.; Shiblee, M.; Mir, S. H.; Nagahara, L. A.; Thundat, T.; Shekar, P. K.; Kawakami, M.; Furukawa, H. J. S. r., Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. Sci. Rep. 2018, 8 (1), 1-8. 14 Han, T.-H.; Kim, H.; Kwon, S.-J.; Lee, T.-W., Graphene-based flexible electronic devices. Mater. Sci. Eng. R Rep. 2017, 118, 1-43. 15 Greczynski, G.; Kugler, T.; Keil, M.; Osikowicz, W.; Fahlman, M.; Salaneck, W. R., Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: a mini-review and some new results. J. Electron. Spectrosc. Relat. Phenom. 2001, 121 (1), 1-17. 16 Hu, X.; Dou, Y.; Li, J.; Liu, Z., Buckled Structures: Fabrication and Applications in Wearable Electronics. Small 2019, 15 (32), 1804805. 17 Matsuhisa, N.; Chen, X.; Bao, Z.; Someya, T., Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019, 48 (11), 2946-2966. 18 Berg, S.; Kelly, T.; Porat, I.; Moradi-Ghadi, B.; Ardebili, H., Mechanical deformation effects on ion conduction in stretchable polymer electrolytes. Appl. Phys. Lett. 2018, 113 (8), 083903. 19 Xu, K.; Lu, Y.; Honda, S.; Arie, T.; Akita, S.; Takei, K., Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J.Mater.Chem.C 2019, 7 (31), 9609-9617. 20 Ji, M.; Deng, H.; Yan, D.; Li, X.; Duan, L.; Fu, Q., Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity–strain sensing behavior. Compos. Sci. Technol. 2014, 92, 16-26. 21 Wu, M.; Shaw, L., Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. J. Appl. Polym. Sci. 2006, 99 (2), 477-488. 22 Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q., Silver Nanowire-Polymer Composite Electrodes for Efficient Polymer Solar Cells. Adv. Mater. 2011, 23 (38), 4453-4457. 23 Reinhard, M.; Eckstein, R.; Slobodskyy, A.; Lemmer, U.; Colsmann, A., Solution-processed polymer–silver nanowire top electrodes for inverted semi-transparent solar cells. Org. Electron. 2013, 14 (1), 273-277. 24 Qiu, L.; Lee, W. H.; Wang, X.; Kim, J. S.; Lim, J. A.; Kwak, D.; Lee, S.; Cho, K., Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Adv. Mater. 2009, 21 (13), 1349-1353. 25 Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K., Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix. Advanced Electronic Materials 2016, 2 (1), 1500250. 26 Savagatrup, S.; Zhao, X.; Chan, E.; Mei, J.; Lipomi, D. J., Effect of Broken Conjugation on the Stretchability of Semiconducting Polymers. Macromol. Rapid Commun. 2016, 37 (19), 1623-1628. 27 Savagatrup, S.; Makaram, A. S.; Burke, D. J.; Lipomi, D. J., Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure. Adv. Funct. Mater. 2014, 24 (8), 1169-1181. 28 Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5 (1), 3005. 29 Wu, H.-C.; Benight, S. J.; Chortos, A.; Lee, W.-Y.; Mei, J.; To, J. W. F.; Lu, C.; He, M.; Tok, J. B. H.; Chen, W.-C.; Bao, Z., A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors. Chem. Mater. 2014, 26 (15), 4544-4551. 30 Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; Chang, C.; Joo, M.; Ryu, C. Y.; Cho, K., Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors. Adv. Funct. Mater. 2005, 15 (1), 77-82. 31 Lin, Y.-C.; Chen, C.-K.; Chiang, Y.-C.; Hung, C.-C.; Fu, M.-C.; Inagaki, S.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12 (29), 33014-33027. 32 Zhao, Y.; Zhao, X.; Zang, Y.; Di, C.-a.; Diao, Y.; Mei, J., Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties. Macromolecules 2015, 48 (7), 2048-2053. 33 Zhao, X.; Zhao, Y.; Ge, Q.; Butrouna, K.; Diao, Y.; Graham, K. R.; Mei, J., Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers. Macromolecules 2016, 49 (7), 2601-2608. 34 Galuska, L. A.; McNutt, W. W.; Qian, Z.; Zhang, S.; Weller, D. W.; Dhakal, S.; King, E. R.; Morgan, S. E.; Azoulay, J. D.; Mei, J.; Gu, X., Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2020, 53 (14), 6032-6042. 35 Zhao, Y.; Zhao, X.; Roders, M.; Qu, G.; Diao, Y.; Ayzner, A. L.; Mei, J., Complementary Semiconducting Polymer Blends for Efficient Charge Transport. Chem. Mater. 2015, 27 (20), 7164-7170. 36 Mun, J.; Wang, G.-J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagné, S.; Tok, J. B. H.; Bao, Z., Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Adv. Funct. Mater. 2018, 28 (43), 1804222. 37 Mun, J.; Ochiai, Y.; Wang, W.; Zheng, Y.; Zheng, Y.-Q.; Wu, H.-C.; Matsuhisa, N.; Higashihara, T.; Tok, J. B. H.; Yun, Y.; Bao, Z., A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 2021, 12 (1), 3572. 38 Wang, S.; Xu, J.; Wang, W.; Wang, G.-J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S.-K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B.-H.; Bao, Z. Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array. Nature 2018, 555, 83−88 39 Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically Stretchable Conjugated Polymer Semiconductors in Field Effect Transistors. Prog. Polym. Sci. 2020, 100, 101181. 40 Zheng, Y.; Zhang, S.; Tok, J. B.-H.; Bao, Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J. Am. Chem. Soc. 2022, 144, 4699–4715. 41 Wu, P. H.; Lin, Y. C.; Laysandra, L.; Lee, M. H.; Chiu, Y. C.; Isono, T.; Satoh, T.; Chen, W. C. Organic–Inorganic Nanocomposite Film for High-Performance Stretchable Resistive Memory Device. Macromol. Rapid Commun. 2020, 41, 1900542. 42 Shi, Q.; Wang, J.; Aziz, I.; Lee, P. S. Stretchable and Wearable Resistive Switching Random-Access Memory. Adv. Intell. Syst. 2020, 2, 2000007. 43 Li, Z.; Chueh, C.-C.; Jen, A. K.-Y. Recent Advances in Molecular Design of Functional Conjugated Polymers for High-Performance Polymer Solar Cells. Prog. Polym. Sci. 2019, 99, 101175. 44 Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C. Recent Progress in Flexible and Stretchable Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2002529. 45 Higashihara, T. Strategic Design and Synthesis of π-Conjugated Polymers Suitable as Intrinsically Stretchable Semiconducting Materials. Polym. J. 2021, 53, 1061−1071. 46 Lin, Y.-C.; Matsuda, M.; Chen, C.-K.; Yang, W.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C. Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021, 54, 7388−7399. 47 Lin, Y.-C.; Matsuda, M.; Sato, K.; Chen, C.-K.; Yang, W.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C. Intrinsically Stretchable Naphthalenediimide–Bithiophene Conjugated Statistical Terpolymers Using Branched Conjugation Break Spacers for Field–Effect Transistors. Polym. Chem. 2021, 12, 6167−6178. 48 Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.-G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B.-H.; Bao, Z. Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. Nature 2016, 539, 411–415. 49 Melenbrink, E. L.; Hilby, K. M.; Alkhadra, M. A.; Samal, S.; Lipomi, D. J.; Thompson, B. C. Influence of Systematic Incorporation of Conjugation-Break Spacers into Semi-Random Polymers on Mechanical and Electronic Properties. ACS Appl. Mater. Interfaces 2018, 10, 32426–32434. 50 Lin, Y.-C.; Huang, Y.-W.; Hung, C.-C.; Chiang, Y.-C.; Chen, C.-K.; Hsu, L.-C.; Chueh, C.-C.; Chen, W.-C. Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility–Stretchability Property. ACS Appl. Mater. Interfaces 2020, 12, 50648–50659. 51 Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A. J.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P.; Stingelin-Stutzmann, N. Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers. Adv. Funct. Mater. 2007, 17, 2674–2679. 52 Peng, R.; Pang, B.; Hu, D.; Chen, M.; Zhang, G.; Wang, X.; Lu, H.; Cho, K.; Qiu, L. An ABA Triblock Copolymer Strategy for Intrinsically Stretchable Semiconductors. J. Mater. Chem. C. 2015, 3, 3599–3606. 53 Wang, J.-T.; Takshima, S.; Wu, H.-C.; Shih, C.-C.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C. Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)-block-poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules 2017, 50, 1442–1452. 54 Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Alkhadra, M. A.; Wan, Jeremy M.-H. A.; Chiang, S.-C.; Rodriquez, D.; Root, S. E.; Savagatrup, S.; Lipomi, D. J. Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules 2018, 51, 5944−5949. 55 Higashihara, T.; Fukuta, S.; Ochiai, Y.; Sekine, T.; Chino, K.; Koganezawa, T.; Osaka, I. Synthesis and Deformable Hierarchical Nanostructure of Intrinsically Stretchable ABA Triblock Copolymer Comprised of Poly(3-hexylthiophene) and Polyisobutylene Segments. ACS Appl. Polym. Mater. 2019, 1, 315−320. 56 Chiang, Y.-C.; Kobayashi, S.; Isono, T.; Shih, C.-C.; Shingu, T.; Hung, J.-J.; Hsieh, H.-C.; Tung, S.-H.; Satoh, T.; Chen, W.-C. Effect of a Conjugated/Elastic Block Sequence on the Morphology and Electronic Properties of Polythiophene Based Stretchable Block Copolymers. Polym. Chem. 2019, 10, 5452–5464. 57 Hsu, L.-C.; Kobayashi, S.; Isono, T. Chiang, Y.-C.; Ree, B. J.; Satoh, T.; Chen, W.-C. Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020, 53, 7496–7510. 58 Ding, Y.; Yuan, Y.; Wu, N.; Wang, X.; Zhang, G.; Qiu, L. Intrinsically Stretchable n-Type Polymer Semiconductors through Side Chain Engineering. Macromolecules 2021, 54, 8849–8859. 59 Lei, T.; Dou, J.-H.; Pei, J. Influence of Alkyl Chain Branching Positions on the Hole Mobilities of Polymer Thin-Film Transistors. Adv. Mater. 2012, 24, 6457–6461. 60 Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C. Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors. Macromolecules 2016, 49, 8540–8548. 61 Chiang, Y.-C.; Wu, H.-C.; Wen, H.-F.; Hung, C.-C.; Hong, C.-W.; Kuo, C.-C.; Higashihara, T.; Chen, W.-C. Tailoring Carbosilane Side Chains toward Intrinsically Stretchable Semiconducting Polymers. Macromolecules 2019, 52, 4396–4404. 62 Wang, G.-J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z. Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Adv. Funct. Mater. 2016, 26, 7254–7262. 63 Wang, G.-J. N.; Zheng, Y.; Zhang, S.; Kang, J.; Wu, H.-C.; Gasperini, A.; Zhang, H.; Gu, X.; Bao, Z. Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor. Chem. Mater. 2019, 31, 6465–6475. 64 Zheng, Y.; Ashizawa, M.; Zhang, S.; Kang, J.; Nikzad, S.; Yu, Z.; Ochiai, Y.; Wu, H.-C.; Tran, H.; Mun, J.; Zheng, Y.-Q.; Tok, B.-H, J; Gu, Z.; Bao, Z. Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chem. Mater. 2020, 32, 5700–5714. 65 Maria, F. D.; Gazzano, M.; Zanelli, A.; Gigli, G.; Loiudice, A.; Rizzo, A.; Biasiucci, M.; Salatelli, E.; D’Angelo, P.; Barbarell, G. Synthesis and Photovoltaic Properties of Regioregular Head-to-Head Substituted Thiophene Hexadecamers. Macromolecules 2012, 45, 8284–8291. 66 Vegiraju, S.; Chang, B.-C.; Priyanka, P.; Huang, D.-Y.; Wu, K.-Y.; Li, L.-H.; Chang, W.-C.; Lai, Y.-Y.; Hong, S.-H.; Yu, B.-C.; Wang, C.-L.; Chang, W.-J.; Liu, C.-L.; Chen, M.-C.; Facchetti, A. Intramolecular Locked Dithioalkylbithiophene-Based Semiconductors for High-Performance Organic Field-Effect Transistors. Adv. Mater. 2017, 29, 1702414. 67 Salatelli, E.; Marinelli, M.; Lanzi, M.; Zanelli, A.; Dell’Elce, S.; Liscio, A.; Gazzano, M.; Maria, F. D. Bulk Heterojunction Solar Cells: The Role of Alkyl Side Chain on Nanoscale Morphology of Sulfur Over-Rich Regioregular Polythiophene/Fullerene Blends. J. Phys. Chem. C 2018, 122, 4156–4164. 68 Li, Y.; Zhong, Y.; Jiang, H.; Rath, T.; Wang, Q.; Ehmannd, H. M. A.; Trimmel, G.; Wen, S.; Zhang, Y.; Yang, R. The Effect of Alkylthio Substituents on the Photovoltaic Properties of Conjugated Polymers. Org. Electron. 2019, 68, 50–55. 69 Lin, P.-S.; Shoji, Y.; Afraj, S. N.; Ueda, M.; Lin, C.-H.; Inagaki, S.; Endo, T.; Tung, S.-H.; Chen, M.-C.; Liu, C.-L.; Higashihara, T. Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 31898–31909. 70 Guo, X.; Watson, M. D. Conjugated Polymers from Naphthalene Bisimide. Org. Lett. 2008, 10, 5333–5336. 71 Song, R.; Schrickx, H.; Balar, N.; Siddika, S.; Sheikh, N.; O’Connor, B. T. Unveiling the Stress–Strain Behavior of Conjugated Polymer Thin Films for Stretchable Device Applications. Macromolecules 2020, 53, 1988–1997. 72 Lin, Y.-C.; Huang, Y.-W.; Wu, Y.-S.; Li, J.-S.; Yang, Y.-F.; Chen, W.-C.; Chueh, C.-C. Improving Mobility–Stretchability Properties of Polythiophene Derivatives through Ester-Substituted, Biaxially Extended Conjugated Side Chains. ACS Appl. Polym. Mater. 2021, 3, 1628–1637. 73 Steyrleuthner, R.; Schubert, M.; Howard, I.; Klaumünzer, B.; Schilling, K.; Chen, Z.; Saalfrank, P.; Laquai, F.; Facchetti, A.; Neher, D. J. Am. Chem. Soc. 2012, 134 (44), 18303-18317. 74 Wang, S.; Li, H.; Zhao, K.; Zhang, L.; Zhang, Q.; Yu, X.; Tian, H.; Han, Y. Macromolecules 2022, 55 (7), 2497-2508. 75 Scharsich, C.; Lohwasser, R. H.; Sommer, M.; Asawapirom, U.; Scherf, U.; Thelakkat, M.; Neher, D.; Köhler, A. J. Polym. Sci., Part B: Polym. Phys. 2012, 50 (6), 442-453. 76 Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.-G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z. Nature 2016, 539 (7629), 411-415. 77 Song, R.; Schrickx, H.; Balar, N.; Siddika, S.; Sheikh, N.; O’Connor, B. T. Macromolecules 2020, 53 (6), 1988-1997. 78 Balar, N.; Siddika, S.; Kashani, S.; Peng, Z.; Rech, J. J.; Ye, L.; You, W.; Ade, H.; O’Connor, B. T. Chem. Mater. 2020, 32 (15), 6540-6549. 79 Balar, N.; Rech, J. J.; Siddika, S.; Song, R.; Schrickx, H. M.; Sheikh, N.; Ye, L.; Megret Bonilla, A.; Awartani, O.; Ade, H.; You, W.; O'Connor, B. T. Adv. Funct. Mater. 2022, 32 (4), 2105597. 80 Flèche, G.; Huchette, M., Isosorbide. Preparation, Properties and Chemistry. Starch - Stärke 1986, 38 (1), 26-30. 81 Rose, M.; Palkovits, R., Isosorbide as a Renewable Platform chemical for Versatile Applications—Quo Vadis ChemSusChem 2012, 5 (1), 167-176. 82 Fletcher Jr HG, Goepp Jr RM. 1,4,3,6-Hexitol dianhydride, l-isoidide. J Am Chem Soc 1945, 67(6), 1042-1043. 83 Bersot, J. C.; Jacquel, N.; Saint-Loup, R.; Fuertes, P.; Rousseau, A.; Pascault, J. P.; Spitz, R.; Fenouillot, F.; Monteil, V., Efficiency Increase of Poly(ethylene terephthalate-co-isosorbide terephthalate) Synthesis using Bimetallic Catalytic Systems. Macromol. Chem. Phys. 2011, 212 (19), 2114-2120. 84 Storbeck, R.; Rehahn, M.; Ballauff, M., Synthesis and properties of high-molecular-weight polyesters based on 1,4:3,6-dianhydrohexitols and terephthalic acid. Die Makromolekulare Chemie 1993, 194 (1), 53-64. 85 Caouthar, A. A.; Loupy, A.; Bortolussi, M.; Blais, J. c.; Dubreucq, L.; Meddour, Synthesis and characterization of new polyamides based on diphenylaminoisosorbide. J Polym Sci Part A Polym Chem 2005, 43 (24), 2480-2491. 86 Caouthar, A.; Roger, P.; Tessier, M.; Chatti, S.; Blais, J. C.; Bortolussi, M., Synthesis and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide. Eur. Polym. J. 2007, 43 (1), 220-230. 87 Chatti, S.; Schwarz, G.; Kricheldorf, H. R., Cyclic and Noncyclic Polycarbonates of Isosorbide (1,4:3,6-Dianhydro-d-glucitol). Macromolecules 2006, 39 (26), 9064-9070. 88 Zhang, F.; Wang, Q.; Wang, L.; Bai, Y., Implementing plant-derived isosorbide and isomannide as comonomers for polyester synthesis: Effects of crystallization properties on optical properties. J. Appl. Polym. Sci. 2017, 134 (43), 45444. 89 Bachmann, F.; Reimer, J.; Ruppenstein, M.; Thiem, J., Synthesis of Novel Polyurethanes and Polyureas by Polyaddition Reactions of Dianhydrohexitol Configurated Diisocyanates. Macromol. Chem. Phys. 2001, 202 (17), 3410-3419. 90 Bachmann, F.; Reimer, J.; Ruppenstein, M.; Thiem, J., Synthesis of a novel starch-derived AB-type polyurethane. Macromol. Rapid Commun. 1998, 19 (1), 21-26. 91 Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Alkhadra, M. A.; Wan, J. M. H.; Chiang, A. S. C.; Rodriquez, D.; Root, S. E.; Savagatrup, S.; Lipomi, D. J., Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules 2018, 51 (15), 5944-5949. 92 Tran, H.; Feig, V. R.; Liu, K.; Wu, H.-C.; Chen, R.; Xu, J.; Deisseroth, K.; Bao, Z., Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Cent. Sci. 2019, 5 (11), 1884-1891. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88824 | - |
| dc.description.abstract | 近年來,有機半導體因其低成本、溶液可加工性、可饒曲性和結構可調性而受到廣泛關注,這些特性供它們成為柔性電子設備及積體電路的材料選擇。為了開發本質性可拉伸的半導體高分子,運用高分子主鏈及側鏈上的加工策略來控制其共軛結晶形態、薄膜形貌以及拉伸性;可惜的是通常這種加工方式無法同時提升高分子的拉伸性以及其載子遷移率。在本質性可拉伸的半導體開發中,相形之下,p型共軛高分子比n型共軛高分子的發展較為成熟。因此,在本論文中將系統地研究關於具共軛阻斷基(conjugation break spacers)隨機三元聚合(random terpolymerization)的萘二亞胺(NDI)衍生物高分子及其本質性可拉伸有機場效電晶體的基礎知識。
本論文章節二,在不同長度的苯酯基共軛阻斷基中引入硫(S)、碳(C)、氧(O)三種不同的異核原子進行探討。相比之下,含硫原子的共軛阻斷基展現較佳的拉伸性,而由於高極性、較僵硬的氧原子在含氧原子基共軛阻斷基中,造成較強的固態聚集及微相分離,還有較高的楊氏係數與玻璃轉化溫度,破壞了其薄膜的本質可拉伸性。另外,研究發現較長(2)的共軛阻斷基有較多的應力釋放元素,使其薄膜在受到較大的應變時,才開始破裂,導致在高應變(60%)下,相較於那些具有較短(1)的共軛阻斷基,展現了較佳的電子遷移率。在60%應變下,S1、S2、C1、C2的平行、正交電子遷移率(μe∥, μe⊥)分別為(0.00072, 0.00101), (0.00134, 0.00141), (0.00097, 0.00127) 與 (0.00107, 0.00153) cm2 V−1 s−1 於本論文章節三,我們將異山梨醇 (ISB)、異甘露醇 (IMN) 和異艾杜糖醇 (IID) 等雙脫水己糖醇(Dianhydrohexitol)引入萘二亞胺衍生聚合物的具共軛阻斷基中,並討論了立體異構效應之影響。具順式結構異甘露醇與異艾杜糖醇的共軛阻斷基展現了與傳統純直碳鏈相似的特性,包含其拉伸性,於10%應變時破裂和側向(edge-on)堆疊取向的結晶排列;而具有反式結構的異山梨醇展現了出色的高分子鏈重新排列能力以及能有效降低薄膜破裂密度;除此之外,雙軸式(bimodal)結晶性排列、較弱的共軛結晶性以及高分子鏈之間的糾纏,促使了他表現出優異的機械性質與高強度拉伸下的元件表現,在受到高應變時能夠維持三維的載子傳輸通道,甚至在其薄膜100%應變下,我們量測到非常好的元件效果,其平行與正交電子遷移率分別為(0.00295, 0.00309) cm2 V-1 s-1,且其對應的電子遷移保留率(mobility retention)為(53, 56) %。這項研究為隨機三元聚合具共軛阻斷基萘二亞胺衍生物高分子的主鏈加工工程提供了基礎研究知識,並為本質性可拉伸高分子場效電晶體的應用添增新的設計構想與見解。 | zh_TW |
| dc.description.abstract | Organic semiconductors have received a lot of attention in recent years because of their solution processability, low cost, lightweight, flexibility and structural tunability. These properties make them interesting choices for flexible electronic devices and integrated circuits. However, to develop intrinsically stretchable polymeric semiconductors, the strategies and variables that influence the polymers’ mobility–stretchability properties are often trade-offs. Additionally, a lagged progress in the development of intrinsically stretchable n-type conjugated polymers compared with p-type ones is observed. Most researchers focus on the p-type Diketopyrrolopyrrole (DPP) backbone polymers due to their superior mobility performances. To improve their mobility–stretchability properties, several methodologies on backbone and side chain engineering have been applied to control their morphologies, solid-state packing, intrinsic stretchability etc. Hence, in this thesis, the fundamental aspects about random terpolymerization and conjugation break spacers (CBSs) were systematically investigated to further enhance the intrinsically stretchable organic field effect transistor (OFET) performances of n-type naphthalenediimide (NDI) derivatives.
In chapter 2, three types of heteroatoms including sulfur (thioether), oxygen (ether) and carbon (alkyl) were incorporated into ester functionalized CBSs of different lengths. It has been discovered that thioether-base CBSs demonstrated improved stretchability compared with ether-based and conventional alkyl-based CBSs. Conversely, the highly polar oxygen atoms in ether-based CBSs would induce strong aggregations and phase separation with higher Young’s moduli and glass transition temperature (Tg) that would vitiate the stretchability of the polymer film. As expected, longer CBSs (2) could supply extra strain-releasing elements, which attributed to the delayed crack-onset strain with better μe retention at 60% compared with shorter ones (1). However, the electron mobilities (μe) are undesirable due to the over extended CBSs that disrupts intrachain charge transport. At 60% strain, thioether- (S1,S2) and alkyl-CBSs (C1,C2) demonstrated comparable OFET performances with strains parallel, perpendicular to the device channel (μe∥, μe⊥), which are (0.00072, 0.00101), (0.00134, 0.00141), (0.00097, 0.00127) and (0.00107, 0.00153) cm2 V−1 s−1, respectively. In chapter 3, biobased-dianhydrohexitols including isosorbide (ISB), isomannide (IMN) and isoidide (IID) were introduced into CBSs of NDI-derived polymers and the impact of stereoisomerism effect were discussed. Results show that IMN and IID with cis-conformation chemical structures displayed high resemblance with conventional linear alkyl chains in the 10% crack onset-strain and their edge-on favored solid-state stackings. On the contrary, exceptional chain realigning capability with reduced crack density and higher crack onset-strain were observed in polymers containing trans-conformation ISB. In addition, due to their bimodal preferred lamellar packings, chain entanglements, and weak conjugation crystallinity, ISB incorporated CBSs have exceptional mechanical and mobility–stretchability properties that make it possible for them to maintain their 3D charge transport performance even under intense mechanical strain. Astonishingly, charge transport performance with (μe||, μe⊥) values at (0.00295, 0.00309) cm2 V-1 s-1 and corresponding retention (53, 56) % at 100% strain were observed. This work provides new insights to backbone engineering in terpolymerized, CBSs constituted NDI-derivative polymers in stretchable electronic applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:56:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:56:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvii Chapter 1 Introduction 1 1.1 Introduction of organic semiconducting materials 1 1.1.1 Semiconducting Organic Small Molecules 2 1.1.2 Conjugated Polymers 3 1.2 Introduction to Field Effect Transistors 4 1.3 Structure Engineering Intrinsically Stretchable Semiconducting Polymers 6 1.3.1 Molecular Weight and Solvent Effect 7 1.3.2 Regioregularity (RR) Effect 8 1.3.3 Solid State Packing Orientation 9 1.3.4 Side Chain Engineering: Incorporation of Side Chains with Hydrogen Bonding Sites Serve as Sacrificial Bonding 9 1.4 Incorporation of Conjugation Break Spacers (CBSs) for Random Terpolymers 10 1.5 Research Objective 16 Chapter 2 Impact of the Heteroatoms on Mobility–Stretchability Properties of N-type Semiconducting Random Terpolymers with Conjugation Break Spacers 29 2.1 Introduction 29 2.2 Experimental Section 33 2.2.1 Materials 33 2.2.2 Characterization 34 2.2.3 Molecular Simulations 35 2.2.4 Fraction of Aggregate 35 2.2.5 Thermal Mechanical and Mechanical Properties 36 2.2.6 Fabrication of FET Devices 37 2.3 Result and Discussion 39 2.3.1 Molecular Simulations 39 2.3.2 Optical and Electrochemical Characterization 40 2.3.3 Regular FET Device Characteristics 42 2.3.4 Morphology Characterization of the Polymer Thin Films 43 2.3.5 Investigation of the Structure−Stretchability Correlation of the Transferred−Stretched Polymer Films 45 2.3.6 Mobility−Stretchability Properties of the Transferred-Stretched Polymer Films 49 2.4 Conclusion 52 2.5 Tables and Figures 53 Chapter 3 Incorporation of Biobased- Dianhydrohexitols Conjugation Break Spacers into Intrinsically Stretchable π-Conjugated Random Terpolymers 93 3.1 Introduction 93 3.2 Experimental Section 97 3.2.1 Materials 97 3.2.2 Molecular Simulation of DFT Calculations 98 3.2.3 Characterization of Polymer Properties 98 3.2.4 FET Device Fabrication 99 3.3 Result and Discussion 101 3.3.1 DFT Calculations 101 3.3.2 Thermal, Electrochemical and Optical Properties of the Material 101 3.3.3 Regular FET Device of Pristine Polymer Films 102 3.3.4 Morphology of the Polymer Thin Films 104 3.3.5 Investigation of Morphology Variations of Transferred−Stretched Polymer Films 106 3.3.6 Investigation of Mobility−Stretchability relationships of the Stretched-transferred Polymer Films 108 3.4 Conclusion 112 3.5 Tables and Figures 113 Chapter 4 Conclusion and Future Works 153 Reference 156 | - |
| dc.language.iso | en | - |
| dc.subject | 有機場效應電晶體 | zh_TW |
| dc.subject | 雙脫水己糖醇 | zh_TW |
| dc.subject | 異核原子 | zh_TW |
| dc.subject | 共軛阻斷基 | zh_TW |
| dc.subject | 半導體聚合物 | zh_TW |
| dc.subject | 本質可拉伸性 | zh_TW |
| dc.subject | n型共軛高分子 | zh_TW |
| dc.subject | 可拉伸電子元件 | zh_TW |
| dc.subject | organic field effect transistors | en |
| dc.subject | conjugation break spacer | en |
| dc.subject | semiconducting polymers | en |
| dc.subject | n-type conjugated polymers | en |
| dc.subject | intrinsically stretchability | en |
| dc.subject | stretchable electronics | en |
| dc.title | 具有共軛阻斷基之本質可拉伸共軛高分子開發暨場效電晶體 | zh_TW |
| dc.title | Structural Design of Conjugation Break Spacers for Stretchable Semiconducting Polymers for Field-effect Transistors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭霽慶;闕居振;邱昱誠;林彥丞 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Ching Kuo;Chu-Chen Chueh;Yu-Cheng Chiu;Yan-Cheng Lin | en |
| dc.subject.keyword | 有機場效應電晶體,可拉伸電子元件,n型共軛高分子,本質可拉伸性,半導體聚合物,共軛阻斷基,異核原子,雙脫水己糖醇, | zh_TW |
| dc.subject.keyword | organic field effect transistors,stretchable electronics,n-type conjugated polymers,intrinsically stretchability,semiconducting polymers,conjugation break spacer, | en |
| dc.relation.page | 168 | - |
| dc.identifier.doi | 10.6342/NTU202300820 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-05-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 10.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
