Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author廖育德zh_TW
dc.contributor.authorYu-De Liaoen
dc.date.accessioned2023-08-15T17:55:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] S. Brückner, S. Liu, L. Miró, M. Radspieler, L. F. Cabeza, and E. Lävemann, "Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies," Appl. Energy, vol. 151, pp. 157-167, 2015.
[2] I. Johnson, W. T. Choate, and A. Davidson, "Waste Heat Recovery. Technology and Opportunities in Us Industry," BCS, Inc., Laurel, MD (United States), 2008.
[3] S. Sulaiman, S. Izman, M. B. Uday, and M. F. Omar, "Review on Grain Size Effects on Thermal Conductivity in Zno Thermoelectric Materials," RSC Adv., vol. 12, no. 9, pp. 5428-5438, Feb 10 2022, doi: 10.1039/d1ra06133j.
[4] L. J. Huang, B. J. Li, and N. F. Ren, "Enhancing Optical and Electrical Properties of Al-Doped Zno Coated Polyethylene Terephthalate Substrates by Laser Annealing Using Overlap Rate Controlling Strategy," (in English), Ceram. Int., vol. 42, no. 6, pp. 7246-7252, May 1 2016, doi: 10.1016/j.ceramint.2016.01.118.
[5] R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, "Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals," Nano Lett., vol. 11, no. 11, pp. 4706-10, Nov 9 2011, doi: 10.1021/nl203030f.
[6] D. R. Sahu, S. Y. Lin, and J. L. Huang, "Zno/Ag/Zno Multilayer Films for the Application of a Very Low Resistance Transparent Electrode," (in English), Appl. Surf. Sci., vol. 252, no. 20, pp. 7509-7514, Aug 15 2006, doi: 10.1016/j.apsusc.2005.09.021.
[7] B. L. Zhu, C. S. Xie, A. H. Wang, J. Wu, R. Wu, and J. Liu, "Laser Sintering Zno Thick Films for Gas Sensor Application," (in English), J. Mater. Sci., vol. 42, no. 14, pp. 5416-5420, Jul 2007, doi: 10.1007/s10853-006-0768-2.
[8] M. S. Chavali and M. P. Nikolova, "Metal Oxide Nanoparticles and Their Applications in Nanotechnology," (in English), SN Appl. Sci., vol. 1, no. 6, p. 607, Jun 2019, doi: 10.1007/s42452-019-0592-3.
[9] M. Abbas, M. Buntinx, W. Deferme, N. Reddy, and R. Peeters, "Oxygen Gas and Uv Barrier Properties of Nano-Zno-Coated Pet and Phbhhx Materials Fabricated by Ultrasonic Spray-Coating Technique," Nanomaterials (Basel), vol. 11, no. 2, p. 449, Feb 10 2021, doi: 10.3390/nano11020449.
[10] Y. D. Yu, W. Zhu, Y. L. Wang, P. C. Zhu, K. Peng, and Y. Deng, "Towards High Integration and Power Density: Zigzag-Type Thin-Film Thermoelectric Generator Assisted by Rapid Pulse Laser Patterning Technique," (in English), Appl. Energy, vol. 275, p. 115404, Oct 1 2020, doi: 10.1016/j.apenergy.2020.115404.
[11] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, and D. Poulikakos, "Air Stable High Resolution Organic Transistors by Selective Laser Sintering of Ink-Jet Printed Metal Nanoparticles," (in English), Appl. Phys. Lett., vol. 90, no. 14, p. 141103, Apr 2 2007, doi: 10.1063/1.2719162.
[12] A. Hussain, H. L. Lee, Y. J. Moon, H. Kang, S. J. Moon, and J. Y. Hwang, "Temperature Estimation During Pulsed Laser Sintering of Silver Nanoparticles," (in English), Appl. Sci-basel., vol. 12, no. 7, p. 3467, Apr 2022, doi: 10.3390/app12073467.
[13] R. Seeram and F. FREng, "A Review on the Enhancement of Figure of Merit from Bulk to Nano Thermoelectric Materials," 2012.
[14] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," (in English), Annu. Rev. Mater. Res, vol. 41, pp. 399-431, 2011, doi: 10.1146/annurev-matsci-062910-100445.
[15] J. He and T. M. Tritt, "Advances in Thermoelectric Materials Research: Looking Back and Moving Forward," Science, vol. 357, no. 6358, p. eaak9997, Sep 29 2017, doi: 10.1126/science.aak9997.
[16] P. Jood et al., "Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties," Nano Lett., vol. 11, no. 10, pp. 4337-42, Oct 12 2011, doi: 10.1021/nl202439h.
[17] J. H. Liang, Y. J. Chen, and Y. C. Wang, "Preparation of P-Type Zno Film on the Gaas Substrate by Thermal Annealing Treatment," (in English), Surf. Coat. Technol., vol. 231, pp. 243-246, Sep 2013, doi: 10.1016/j.surfcoat.2012.04.079.
[18] Y. J. J. Chen et al., "The Study of Rapid Thermal Annealing on Arsenic-Doped Zno for the P-Type Zno Formation," (in English), J. Cryst. Growth, vol. 362, pp. 193-196, Jan 1 2013, doi: 10.1016/j.jcrysgro.2012.03.060.
[19] M. Ullah, C. L. Wang, W. B. Su, A. Manan, A. S. Ahmad, and A. U. Rehman, "Thermoelectric Properties of Indium-Doped Zinc Oxide Sintered in an Argon Atmosphere," (in English), J. Mater. Sci. Mater. Electron., vol. 30, no. 5, pp. 4813-4818, Mar 2019, doi: 10.1007/s10854-019-00775-6.
[20] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, "Thermoelectric Properties of Zno Doped with the Group 13 Elements," in XVI ICT'97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291), 1997: IEEE, pp. 240-243.
[21] K. F. Cai, E. Muller, C. Drasar, and A. Mrotzek, "Preparation and Thermoelectric Properties of Al-Doped Zno Ceramics," (in English), Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., vol. 104, no. 1-2, pp. 45-48, Nov 15 2003, doi: 10.1016/S0921-5107(03)00280-0.
[22] N. H. Tran Nguyen et al., "Thermoelectric Properties of Indium and Gallium Dually Doped Zno Thin Films," ACS Appl. Mater. Interfaces, vol. 8, no. 49, pp. 33916-33923, Dec 14 2016, doi: 10.1021/acsami.6b10591.
[23] S. Teehan, H. Efstathiadis, and P. Haldar, "Enhanced Power Factor of Indium Co-Doped Zno:Al Thin Films Deposited by Rf Sputtering for High Temperature Thermoelectrics," (in English), J. Alloys Compd., vol. 509, no. 3, pp. 1094-1098, Jan 21 2011, doi: 10.1016/j.jallcom.2010.10.004.
[24] L. Fang et al., "Thermoelectric and Magnetothermoelectric Properties of in-Doped Nano-Zno Thin Films Prepared by Rf Magnetron Sputtering," (in English), J. Supercond. Novel Magn., vol. 23, no. 6, pp. 889-892, Aug 2010, doi: 10.1007/s10948-010-0706-z.
[25] S. H. Lee, J. H. Lee, S. J. Choi, and J. S. Park, "Studies of Thermoelectric Transport Properties of Atomic Layer Deposited Gallium-Doped Zno," (in English), Ceram. Int., vol. 43, no. 10, pp. 7784-7788, Jul 2017, doi: 10.1016/j.ceramint.2017.03.087.
[26] H. Cheng, X. J. Xu, H. H. Hng, and J. Ma, "Characterization of Al-Doped Zno Thermoelectric Materials Prepared by Rf Plasma Powder Processing and Hot Press Sintering," (in English), Ceram. Int., vol. 35, no. 8, pp. 3067-3072, Dec 2009, doi: 10.1016/j.ceramint.2009.04.010.
[27] X. R. Qu, W. Wang, S. C. Lv, and D. C. Jia, "Thermoelectric Properties and Electronic Structure of Al-Doped Zno," (in English), Solid State Commun., vol. 151, no. 4, pp. 332-336, Feb 2011, doi: 10.1016/j.ssc.2010.11.020.
[28] K. Park, J. K. Seong, Y. Kwon, S. Nahm, and W. S. Cho, "Influence of Sno2 Addition on the Thermoelectric Properties of Zn1-Xsnxo(0.01 <= X <= 0.05)," (in English), Mater. Res. Bull., vol. 43, no. 1, pp. 54-61, Jan 8 2008, doi: 10.1016/j.materresbull.2007.02.018.
[29] K. Park, J. K. Seong, and G. H. Kim, "Nio Added Zn1-Xnixo (0 <= X <= 0.05) for Thermoelectric Power Generation," (in English), J. Alloys Compd., vol. 473, no. 1-2, pp. 423-427, Apr 3 2009, doi: 10.1016/j.jallcom.2008.05.101.
[30] M. Ohtaki, K. Araki, and K. Yamamoto, "High Thermoelectric Performance of Dually Doped Zno Ceramics," (in English), J. Electron. Mater., vol. 38, no. 7, pp. 1234-1238, Jul 2009, doi: 10.1007/s11664-009-0816-1.
[31] M. H. Hong, H. Choi, D. I. Shim, H. H. Cho, J. Kim, and H. H. Park, "Study of the Effect of Stress/Strain of Mesoporous Al-Doped Zno Thin Films on Thermoelectric Properties," (in English), Solid State Sci., vol. 82, pp. 84-91, Aug 2018, doi: 10.1016/j.solidstatesciences.2018.05.010.
[32] S. Saini et al., "Porosity-Tuned Thermal Conductivity in Thermoelectric Al-Doped Zno Thin Films Grown by Mist-Chemical Vapor Deposition," (in English), Thin Solid Films, vol. 685, pp. 180-185, Sep 1 2019, doi: 10.1016/j.tsf.2019.06.010.
[33] X. Zi-qiang, D. Hong, L. Yan, and C. Hang, "Al-Doping Effects on Structure, Electrical and Optical Properties of C-Axis-Orientated Zno: Al Thin Films," Mater. Sci. Semicond. Process., vol. 9, no. 1-3, pp. 132-135, 2006.
[34] R. Viswanatha, S. Sapra, and S. Satpati, "Pv; Dev, Bn; Sarma, Dd," J. Mater. Chem., vol. 14, pp. 661-668, 2004.
[35] N. Azizah et al., "Influence of Al Doping on the Crystal Structure, Optical Properties, and Photodetecting Performance of Zno Film," (in English), Prog. Nat. Sci., vol. 30, no. 1, pp. 28-34, Feb 2020, doi: 10.1016/j.pnsc.2020.01.006.
[36] Y. L. Zhang et al., "Optical and Electrical Properties of Aluminum-Doped Zinc Oxide Nanoparticles," (in English), J. Mater. Sci., vol. 46, no. 3, pp. 774-780, Feb 2011, doi: 10.1007/s10853-010-4813-9.
[37] M. Zenou, O. Ermak, A. Saar, and Z. Kotler, "Laser Sintering of Copper Nanoparticles," J. Phys. D: Appl. Phys., vol. 47, no. 2, p. 025501, 2013.
[38] J. W. Chung, S. W. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, "Conductor Microstructures by Laser Curing of Printed Gold Nanoparticle Ink," (in English), Appl. Phys. Lett., vol. 84, no. 5, pp. 801-803, Feb 2 2004, doi: 10.1063/1.1644907.
[39] G. Qin, L. D. Fan, and A. Watanabe, "Formation of Indium Tin Oxide Film by Wet Process Using Laser Sintering," (in English), J. Mater. Process. Technol., vol. 227, pp. 16-23, Jan 2016, doi: 10.1016/j.jmatprotec.2015.07.011.
[40] I. Shishkovsky, I. Yadroitsev, P. Bertrand, and I. Smurov, "Alumina-Zirconium Ceramics Synthesis by Selective Laser Sintering/Melting," (in English), Appl. Surf. Sci., vol. 254, no. 4, pp. 966-970, Dec 15 2007, doi: 10.1016/j.apsusc.2007.09.001.
[41] S. Sulaiman, I. Sudin, U. M. B. Al-Naib, and M. F. Omar, "Review of the Nanostructuring and Doping Strategies for High-Performance Zno Thermoelectric Materials," (in English), Crystals, vol. 12, no. 8, p. 1076, Aug 2022, doi: 10.3390/cryst12081076.
[42] K. Murali et al., "Direct Selective Laser Sintering of Iron-Graphite Powder Mixture," (in English), J. Mater. Process. Technol., vol. 136, no. 1-3, pp. 179-185, May 10 2003, doi: 10.1016/S0924-0136(03)00150-X.
[43] P. Fischer, M. Locher, V. Romano, H. P. Weber, S. Kolossov, and R. Glardon, "Temperature Measurements During Selective Laser Sintering of Titanium Powder," (in English), Int. J. Mach. Tools Manuf., vol. 44, no. 12-13, pp. 1293-1296, Oct 2004, doi: 10.1016/j.ijmachtools.2004.04.019.
[44] Q. S. Xu et al., "Flexible Transparent Conductive Films on Pet Substrates with an Azo/Agnw/Azo Sandwich Structure," (in English), J. Mater. Chem. C, vol. 2, no. 19, pp. 3750-3755, 2014, doi: 10.1039/c3tc32554g.
[45] T. Minami, K. Oohashi, S. Takata, T. Mouri, and N. Ogawa, "Preparations of Zno-Al Transparent Conducting Films by Dc Magnetron Sputtering," (in English), Thin Solid Films, vol. 193, no. 1-2, pp. 721-729, Dec 15 1990, doi: Doi 10.1016/0040-6090(90)90224-2.
[46] B. Zhou et al., "Significant Enhancement in the Thermoelectric Performance of Aluminum-Doped Zno Tuned by Pore Structure," ACS Appl. Mater. Interfaces, vol. 12, no. 46, pp. 51669-51678, Nov 18 2020, doi: 10.1021/acsami.0c16506.
[47] J. Sengupta, R. K. Sahoo, and C. D. Mukherjee, "Effect of Annealing on the Structural, Topographical and Optical Properties of Sol-Gel Derived Zno and Azo Thin Films," (in English), Mater. Lett., vol. 83, pp. 84-87, Sep 15 2012, doi: 10.1016/j.matlet.2012.05.130.
[48] F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, and L. J. Zhuge, "Influence of Thickness and Annealing Temperature on the Electrical, Optical and Structural Properties of Azo Thin Films," (in English), Vacuum, vol. 89, pp. 127-131, Mar 2013, doi: 10.1016/j.vacuum.2012.02.040.
[49] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, "Structural, Electrical and Optical Properties of Sol-Gel Azo Thin Films," (in English), Curr. Appl Phys., vol. 9, no. 3, pp. 683-687, May 2009, doi: 10.1016/j.cap.2008.06.006.
[50] M. Mitra, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, and D. Banerjee, "Facile Synthesis of Aluminium Doped Zinc Oxide-Polyaniline Hybrids for Photoluminescence and Enhanced Visible-Light Assisted Photo-Degradation of Organic Contaminants," (in English), Appl. Surf. Sci., vol. 402, pp. 418-428, Apr 30 2017, doi: 10.1016/j.apsusc.2017.01.072.
[51] A. Mahmood et al., "Analyses of Structural and Electrical Properties of Aluminium Doped Zno-Nps by Experimental and Mathematical Approaches," J. King Saud Univ. Sci., vol. 34, no. 2, p. 101796, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88822-
dc.description.abstract隨著科技的發展,人類對於能源的消耗日益上升,換言之,廢熱的總量也在日益的增加,工業上的廢熱因其熱源溫度較高,已經有許多人在探討回收的方法,一般生活上也會有廢熱的產生,但其規模、時長及溫差大多不向工業廢熱一樣容易回收利用,因此如何將讓電裝置的體積縮小、提高轉換效率甚至是對人體無害就變成是重要的議題,而熱電薄膜就是為此而誕生的里程碑。
選擇鋁摻雜氧化鋅作為此研究之材料是由於高導電性、易取得(成本低),對環境的汙染程度較低,使其成為近年來研究發現頗具潛力的熱門熱電材料之一,本研究利用波長532 nm、脈衝波時間8 ns的雷射,利用雷射高能量密度以及極短的加熱時間,搭配2D振鏡系統,高效和低成本的方式。將摻雜鋁的氧化鋅燒結沉積在石英上。
本實驗表面質量密度固定為5.1 mg/cm^2,並將雷射掃面之線段間距固定為20 μm,藉由調整不同脈衝重疊率及雷射能量大小來找出最佳的鋁摻雜氧化鋅奈米顆粒(0.5 wt%)薄膜製成的區間參數,並以相同的雷射能量區間及相同的脈衝重疊率來對不同摻雜濃度(0.5 wt%、1 wt%、2 wt%)的鋁摻雜氧化鋅奈米顆粒的雷射燒結結果進行表面型態、電性急熱電性質的比較。
zh_TW
dc.description.abstractWith increasing energy consumption, the amount of waste heat generated has become a pressing issue. Industrial waste heat, known for its high temperature, has attracted attention for potential recovery methods. However, recovering waste heat from everyday life poses challenges due to its smaller scale, shorter duration, and lower temperature differentials. To address this, researchers have focused on developing thermoelectric thin films.
Aluminum-doped zinc oxide has been chosen for this research due to its high conductivity, availability, low cost, and minimal environmental impact. It has emerged as a promising thermoelectric material. In this study, a laser with specific parameters and a 2D scanning mirror system were utilized for efficient and cost-effective fabrication. Aluminum-doped zinc oxide was sintered onto quartz substrates using laser-induced forward transfer.
The experiment involved a fixed surface mass density and controlled line spacing of the scanned laser. By adjusting pulse overlap ratios and laser energy levels, the optimal parameters for fabricating thin films with aluminum-doped zinc oxide nanoparticles (0.5 wt%) were determined. Surface morphology and electrical and thermoelectric properties of the laser-sintered films were compared among different doping concentrations (0.5 wt%, 1 wt%, 2 wt%) of aluminum-doped zinc oxide nanoparticles, using the same laser energy range and pulse overlap ratio.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:55:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:55:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第1章 緒論 1
第2章 文獻回顧及實驗動機 2
2.1 熱電原理 2
2.1.1 席貝克效應 (Seebeck Effect) 2
2.1.2 帕爾帖效應 (Peltier Effect) 3
2.1.3 湯姆森效應 (Thomson Effect) 5
2.1.4 無因次熱電參數 6
2.2 不同摻雜材料之氧化鋅應用 9
2.2.1 砷摻雜之氧化鋅 9
2.2.2 銦摻雜之氧化鋅 11
2.2.3 鎵摻雜之氧化鋅 12
2.2.4 鋁摻雜之氧化鋅 13
2.2.5 雙摻雜之氧化鋅 14
2.2.6 不同摻雜之氧化鋅 16
2.3 鋁摻雜氧化鋅奈米顆粒 17
2.3.1 摻雜濃度對電性和熱電性質之影響 17
2.3.2 不同基材之影響 19
2.3.3 摻雜濃度對光學性質之影響 20
2.4 加法雷射燒結之應用 23
2.4.1 金屬奈米顆粒 23
2.4.2 金屬氧化物之燒結 27
2.4.3 陶瓷材料之燒結 28
2.5 研究動機與實驗目的 29
第3章 實驗方法與實驗架構 31
3.1 氧化鋅奈米顆粒之塗層製備 31
3.1.1 鋁摻雜氧化鋅奈米顆粒塗層之溶液配置 31
3.2 選擇性雷射燒結實驗 33
3.2.1 脈衝雷射光路架設 35
3.2.2 振鏡掃瞄系統 37
3.2.3 掃描狹縫光束分析儀 39
3.2.4 微型控制走台 41
3.3 薄膜表面分析 42
3.3.1 膜厚測定儀 (Surface Profiler) 42
3.3.2 X光繞射儀(X-ray diffractometer , XRD) 43
3.3.3 掃描式電子顯微鏡 (Scanning Electron Microscope , SEM) 44
3.4 薄膜之電性及熱電分析 45
3.4.1 四點探針 (Four point Probe) 45
3.4.2 霍爾量測儀 (Hall Effect Measurement System) 47
3.4.3 數位多功能電表 (Digital Multimeter , DMM) 49
3.4.4 加熱系統 (Heater) 50
第4章 結果與討論 51
4.1 鋁摻雜氧化鋅奈米顆粒塗層 51
4.2 選擇性雷射燒結之參數討論 53
4.2.1 脈衝雷射輸出功率 53
4.2.2 雷射光斑大小測量 55
4.3 雷射燒結鋁摻雜氧化鋅奈米顆粒線段 56
4.4 雷射燒結鋁摻雜氧化鋅奈米顆粒薄膜 59
4.4.1 98 %脈衝重疊率之結果 59
4.4.2 不同脈衝重疊率之薄膜型態比較 62
4.4.3 判斷燒結材料分佈及燒結現象之分析 65
4.4.4 薄膜電性分析 67
4.5 不同摻雜濃度之鋁摻雜氧化鋅奈米顆粒薄膜 69
4.5.1 不同摻雜濃度下之薄膜形態 70
4.5.2 不同摻雜濃度下薄膜電性表現 76
4.5.3 不同摻雜濃度下薄膜電性比較 78
4.6 熱電性質量測 80
4.6.1 席貝克係數及功率因子 80
4.6.2 SEM結果 82
第5章 結論及未來展望 83
5.1 結論 83
5.2 未來展望 84
參考文獻 85
-
dc.language.isozh_TW-
dc.subject功率因子zh_TW
dc.subject雷射燒結zh_TW
dc.subject鋁摻雜氧化鋅奈米顆粒zh_TW
dc.subject熱電薄膜zh_TW
dc.subject席貝克係數zh_TW
dc.subjectaluminum-doped zinc oxide nanoparticlesen
dc.subjectlaser sinteringen
dc.subjectpower factoren
dc.subjectSeebeck coefficienten
dc.subjectthermoelectric thin filmsen
dc.title選擇性雷射燒結鋁摻雜氧化鋅奈米顆粒及其 熱電方面的應用zh_TW
dc.titleSelective Laser Sintering of Al-doped Zinc Oxide Nanoparticles for Thermoelectrical Applicationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊嘉揚;陳奕君zh_TW
dc.contributor.oralexamcommitteeJia-Yang Juang;I-Chun Chengen
dc.subject.keyword雷射燒結,鋁摻雜氧化鋅奈米顆粒,熱電薄膜,席貝克係數,功率因子,zh_TW
dc.subject.keywordlaser sintering,aluminum-doped zinc oxide nanoparticles,thermoelectric thin films,Seebeck coefficient,power factor,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202302914-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf8.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved