請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88801完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝旭亮 | zh_TW |
| dc.contributor.advisor | Hsu-Liang Hsieh | en |
| dc.contributor.author | 曾晉濂 | zh_TW |
| dc.contributor.author | Chin-Lien Tseng | en |
| dc.date.accessioned | 2023-08-15T17:50:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Alinsug, M.V., Chen, F.F., Luo, M., Tai, R., Jiang, L., and Wu, K (2012). Subcellular Localization of Class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic Shuttling of HDA15 Is Driven by Light. PLOS ONE 7, e30846.
Bhatia, C., Gaddam, S.R., Pandey, A., and Trivedi, P.K. (2021). COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. Plant Science 303, 110760. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12, 2383-2393. Browse, J. (2009). Jasmonate passes muster: a receptor and targets for the defense hormone. Annual Review of Plant Biology 60, 183-205. Burko, Y., Seluzicki, A., Zander, M., Pedmale, U.V., Ecker, J.R., and Chory, J. (2020). Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. The Plant Cell 32, 967-983. Cashmore, A.R., Jarillo, J.A., Wu, Y.-J., and Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284, 760-765. Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12, 514-521. Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70, 1-9. Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683. Chen, C.-Y. (2016a). The protein interactome and gene regulatory network of the histone deacetylase HDA15 in Arabidopsis. Institute of Plant Biology College of Life Science National Taiwan University Doctoral Dissertation. Chen, C.Y., Tu, Y.T., Hsu, J.C., Hung, H.C., Liu, T.C., Lee, Y.H., Chou, C.C., Cheng, Y.S., and Wu, K. (2020). Structure of Arabidopsis HISTONE DEACETYLASE15. Plant Physiol 184, 1585-1600. Chen, Y.-H. (2016b). Functional studies of transcription factor ELONGATED HYPOCOTYL5 involoved in jasmonate signaling pathway in Arabidopsis. Institute of Plant Biology College of Life Science National Taiwan University Master Dissertation. Christie, J.M. (2007). Phototropin blue-light receptors. Annual Review of Plant Biology 58, 21-45. Christie, J.M., Arvai, A.S., Baxter, K.J., Heilmann, M., Pratt, A.J., O’Hara, A., Kelly, S.M., Hothorn, M., Smith, B.O., Hitomi, K., Jenkins, G.I., and Getzoff, E.D. (2012). Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges. Science 335, 1492-1496. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743. Deikman, J., and Hammer, P.E. (1995). Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant physiology 108, 47-57. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci 15, 573-581. Fornalé, S., Lopez, E., Salazar-Henao, J.E., Fernández-Nohales, P., Rigau, J., and Caparros-Ruiz, D. (2014). AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol 55, 507-516. Franklin, K.A., and Quail, P.H. (2010). Phytochrome functions in Arabidopsis development. Journal of Experimental Botany 61, 11 24. Fraser, C.M., and Chapple, C. (2011). The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9, e0152. Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53, 814-827. Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57, 761-780. Han, X., Huang, X., and Deng, X.W. (2020). The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. Plant Commun 1, 100044. Harborne, J.B., and Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., and Laing, W.A. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13. Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., and Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62, 2465-2483. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol 50, 875-885. Howe, G.A. (2004). Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 23, 223-237. Hughes, N.M., Reinhardt, K., Feild, T.S., Gerardi, A.R., and Smith, W.K. (2010). Association between winter anthocyanin production and drought stress in angiosperm evergreen species. J Exp Bot 61, 1699-1709. Huq, E., and Quail, P.H. (2005). Phytochrome signaling. Handbook of photosensory receptors, 151-170. Jiang, H.-W., Peng, K.-C., Hsu, T.-Y., Chiou, Y.-C., and Hsieh, H.-L. (2023). Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLOS Genetics 19, e1010779. Jin, H. (2000). Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19, 6150-6161. Josse, E.-M., and Halliday, K.J. (2008). Skotomorphogenesis: the dark side of light signalling. Current Biology 18, R1144-R1146. Kagale, S., and Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-146. Kim, J., Yi, H., Choi, G., Shin, B., Song, P.S., and Choi, G (2003). Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399-2407. Klose, C., Viczián, A., Kircher, S., Schäfer, E., and Nagy, F (2015). Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytol 206, 965-971. Kolesnikov, P., and Zore, S. (1957). Anthocyanin formation in wheat shoots, induced by visible and invisible ultraviolet light. Dokl Akad Nauk SSSR 112, 1079–1081. Ku, J. (2020). Functional sudy of MYB3 and GRP2 in photomorphogenesis development of Arabidopsis seedlings. Institute of Plant Biology College of Life Science National Taiwan University Master Dissertation Kusnetsov, V.V., Doroshenko, A.S., Kudryakova, N.V., and Danilova, M.N. (2020). Role of Phytohormones and Light in De-etiolation. Russian Journal of Plant Physiology 67, 971-984. Lariguet, P., Boccalandro, H.E., Alonso, J.M., Ecker, J.R., Chory, J., Casal, J.J., and Fankhauser, C. (2003). A Growth Regulatory Loop That Provides Homeostasis to Phytochrome A Signaling. The Plant Cell 15, 2966-2978. Lau, K., Podolec, R., Chappuis, R., Ulm, R., and Hothorn, M (2019). Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. Embo j 38, e102140. Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development. The Plant Cell 19, 731-749. Leivar, P., and Quail, P.H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science 16, 19-28. Li, T., Jia, K.-P., Lian, H.-L., Yang, X., Li, L., and Yang, H.-Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications 454, 78-83. Liao, L.-L. (2012). Functional studies of HY5 in light and jasmonic acid signaling in Arabidopsis. Institute of Plant Biology College of Life Science National Taiwan University Master Dissertation Liu, X., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., Hsieh, H.L., and Wu, K (2013). PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25, 1258-1273. Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W., and Harada, J.J, (2010). Arabidopsis homolog of the yeast TREX‐2 mRNA export complex: components and anchoring nucleoporin. The Plant Journal 61, 259-270. Malone, L.A., Barraclough, E.I., Lin-Wang, K., Stevenson, D.E., and Allan, A.C. (2009). Effects of red-leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, Spodoptera litura and Helicoverpa armigera. Entomol Exp Appl 133, 117-127. Mancinelli, A.L. (1985). Light-Dependent Anthocyanin Synthesis: A Model System for the Study of Plant Photomorphogenesis. Botanical Review 51, 107-157. McConn, M., Creelman, R.A., Bell, E., Mullet, J.E., and Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences 94, 5473-5477. Mehrtens, F., Kranz, H., Bednarek, P., and Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant physiology 138, 1083-1096. Meng, X., Wang, J.-R., Wang, G.-D., Liang, X.-Q., Li, X.-D., and Meng, Q.-W. (2015). An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175, 1-8. Misyura, M., Colasanti, J., and Rothstein, S.J. (2013). Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions. J Exp Bot 64, 229-240. Nemhauser, J., and Chory, J. (2002). Photomorphogenesis. Arabidopsis Book 1, e0054. Nguyen, N.H., Jeong, C.Y., Kang, G.H., Yoo, S.D., Hong, S.W., and Lee, H. (2015). MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. Plant J 84, 1192-1205. Ogata, K., Kanei-Ishii, C., Sasaki, M., Hatanaka, H., Nagadoi, A., Enari, M., Nakamura, H., Nishimura, Y., Ishii, S., and Sarai, A. (1996). The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3, 178-187. Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466. Paik, I., Yang, S., and Choi, G. (2012). Phytochrome regulates translation of mRNA in the cytosol. Proc. Natl. Acad. Sci. U.S.A. 109, 1335-1340. Pandey, R., Müller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30, 5036-5055. Pham, V.N., Kathare, P.K., and Huq, E. (2018). Phytochromes and Phytochrome Interacting Factors. Plant Physiol 176, 1025-1038. Podolec, R., and Ulm, R. (2018). Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Current Opinion in Plant Biology 45, 18-25. Ponnu, J., Riedel, T., Penner, E., Schrader, A., and Hoecker, U (2019). Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. Proc. Natl. Acad. Sci. U.S.A. 116, 27133 27141. Preston, J., Wheeler, J., Heazlewood, J., Li, S.F., and Parish, R.W. (2004). AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40, 979-995. Rao, M.V., Lee, H.-i., Creelman, R.A., Mullet, J.E., and Davis, K.R. (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. The Plant Cell 12, 1633-1646. Rausher, M.D. (2006). The evolution of flavonoids and their genes (Springer New York), pp. 175-211. Reymond, P., and Farmer, E.E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Current opinion in plant biology 1, 404-411. Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W., and Goldberg, R.B. (2000). The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. The Plant Cell 12, 1041-1061. Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C., Tsugane, T., and Masuda, T (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. Dna Research 8, 153-161. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675. Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany 60, 3849-3860. Shen, Y., Lei, T., Cui, X., Liu, X., Zhou, S., Zheng, Y., Guérard, F., Issakidis-Bourguet, E., and Zhou, D.-X. (2019). Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. The Plant Journal 100, 991-1006. Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., and Park, Y.I. (2013). HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587, 1543-1547. Stracke, R., Werber, M., and Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4, 447-456. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., and Weisshaar, B. (2007). Differential regulation of closely related R2R3‐MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50, 660-677. Sullivan, J.A., and Deng, X.W. (2003). From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology 260, 289-297. Sun, K., Zheng, Y., and Zhu, Z. (2017). Luciferase Complementation Imaging Assay in Nicotiana benthamiana Leaves for Transiently Determining Protein-protein Interaction Dynamics. J Vis Exp. Van Buskirk, E.K., Decker, P.V., and Chen, M. (2012). Photobodies in Light Signaling. Plant Physiology 158, 52-60. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of botany 100, 681-697. Weiss, D., van der Luit, A., Knegt, E., Vermeer, E., Mol, J.N., and Kooter, J.M. (1995). Identification of endogenous gibberellins in petunia flowers (induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid). Plant Physiology 107, 695-702. Wu, F.-H., Shen, S.-C., Lee, L.-Y., Lee, S.-H., Chan, M.-T., and Lin, C.-S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. Wu, K., Tian, L., Malik, K., Brown, D., and Miki, B. (2000). Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J 22, 19-27. Xiao, Y., Chu, L., Zhang, Y., Bian, Y., Xiao, J., and Xu, D (2022). HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. Frontiers in Plant Science 12. Xie, D.-X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: an Arabidopsis gene required for jasmonate regulated defense and fertility. Science 280, 1091-1094. Xu, X., Paik, I., Zhu, L., and Huq, E. (2015). Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. Trends Plant Sci 20, 641-650. Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., Wang, Z., and Xie, D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220-2236. Zhang, H., He, H., Wang, X., Wang, X., Yang, X., Li, L., and Deng, X.W. (2011). Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65, 346-358. Zhang, X.-H., Zheng, X.-T., Sun, B.-Y., Peng, C.-L., and Chow, W.S. (2018). Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light. Environmental and Experimental Botany 154, 33-43. Zhang, Y., Butelli, E., and Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19, 81-90. Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H.-j., Magusin, A., Pagliarani, C., Wellner, N., Hill, L., Orzaez, D., Granell, A., Jones, Jonathan D.G., and Martin, C. (2013). Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23, 1094-1100. Zhao, L., Peng, T., Chen, C.-Y., Ji, R., Gu, D., Li, T., Zhang, D., Tu, Y.-T., Wu, K., and Liu, X. (2019). HY5 Interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis. Plant Physiol 180, 1450-1466. Zhou, M., Zhang, K., Sun, Z., Yan, M., Chen, C., Zhang, X., Tang, Y., and Wu, Y. (2017). LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol 174, 1348-1358. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88801 | - |
| dc.description.abstract | 植物體內的花青素為一群酚類化合物,除了賦予植物顏色外還具有抗氧化及抗病的功能。花青素的生合成受到光與植物荷爾蒙的調控。MYB3為花青素生合成的負調控者,但目前尚不清楚MYB3如何受到光與植物荷爾蒙的調控。本篇研究發現MYB3與HDA15在遠紅光下具有交互作用,且myb3 hda15 雙突變株在遠紅光及外加茉莉酸處理下相對於野生型及單突變株具有較多的花青素累積。MYB3與HDA15可以共同抑制C4H基因的啟動子活性,因此MYB3與HDA15可能具有協同作用並共同負調控花青素的生合成。MYB3與HDA15也可以共同正調控CHS基因的表現,顯示MYB3與HDA15能夠同時正調控與負調控花青素合成相關基因的表達。myb3 及 hda15 單突變株在遠紅光及藍光環境下比野生型具有較長的下胚軸,但myb3 hda15 雙突變株卻有較單突變株及野生型較短的下胚軸,顯示MYB3與HDA15在調控幼苗光型態發生及下胚軸生長時可能具有相互拮抗的現象。HY5 是光型態發生及花青素生合成的正調控者,其生理功能需要依賴HDA15。總而言之,我們發現MYB3會與HY5競爭與HDA15結合,MYB3 與HDA15兩者具有協同性並能共同調控遠紅光及茉莉酸處理下花青素的生合成,因此MYB3會介導光與茉莉酸訊息傳遞路徑間的互動。 | zh_TW |
| dc.description.abstract | Anthocyanins in plants are phenolic compounds with various colors and function as antioxidants and antimicrobials. The biosynthesis of anthocyanin is regulated by light and various plant hormones. MYB3 functions as a negative regulator in the control of anthocyanin levels. However, how light and plant hormones regulate MYB3 functions remains largely unknown. We found that MYB3 interacted with HDA15 under far-red (FR) light. The double mutant myb3 hda15 showed higher levels of anthocyanin accumulation than wild type and single mutants under FR light and methyl-jasmonate (MeJA) treatment. MYB3 and HDA15 could work together to repress the C4H promoter activity, which suggests that MYB3 and HDA15 worked synergistically as negative regulators of anthocyanin content under FR light and MeJA treatment. MYB3 and HDA15 could work together to promote the CHS gene expression, which suggests that MYB3 and HDA15 act as positive and negative regulators in regulating anthocyanin biosynthesis-related gene expression under FR and JA treatment. In addition, myb3 and hda15 single mutants had a long hypocotyl phenotype under FR and blue light, but the myb3 hda15 double mutant had a shorter hypocotyl than single mutants and wild type, which implies that MYB3 and HDA15 mutually antagonized each other to modulate photomorphogenesis and hypocotyl elongation. Besides, HY5 is a positive regulator of photomorphogenesis and anthocyanin biosynthesis. It interacts with HDA15, and its function depends on HDA15. Further evidence revealed that MYB3 competed with HY5 for binding with HDA15 in negatively and synergistically regulating anthocyanin biosynthesis in Arabidopsis under FR light and MeJA treatment, which suggests the crosstalk between light and jasmonate signaling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:50:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:50:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents vi Introduction 1 Photomorphogenesis and Skotomorphogenesis 1 Anthocyanins in plants 3 Jasmonate-mediated anthocyanin biosynthesis 5 Arabidopsis MYB transcriptions 6 Arabidopsis histone deacetylases 7 HY5 as a key regulator of photomorphogenesis and anthocyanin biosynthesis 8 Motivation of this study 10 Methods and Materials 12 Plant materials and growth condition 12 Measurement of anthocyanin contents 13 Bimolecular fluorescence complementation (BiFC) assay 13 in-vitro pull down assay 14 Luciferase Complementation Imaging (LCI) Assay 14 Analysis of gene expression 15 Transactivation assay 16 Results 17 1. MYB3 and HDA15 act as positive regulators of photomorphogenesis, but antagonize each other under monochromatic light. 17 2. MYB3 & HDA15 act synergistically and negatively regulate hypocotyl and anthocyanin biosynthesis under MeJA treatment. 18 3. MYB3 overexpression lines have opposite phenotype to single mutant. 19 4. MYB3 and HDA15 interact with each other under both light and dark conditions. 20 5. MYB3 affects HY5 to interact with HDA15. 21 6. MYB3 and HDA15 synergistically act as negative regulators of C4H gene expression under FR light with MeJA treatment. 21 Discussion 23 1. MYB3 and HDA15 antagonize each other in regulating hypocotyl elongation. 23 2. MYB3 competes with HY5 for HDA15, for the negative feedback regulation of anthocyanin biosynthesis after MeJA treatment. 24 3. MYB3 and HDA15 are both positive and negative regulators in regulating the expression of anthocyanin biosynthetic genes. 26 4. The crosstalk between light and jasmonate signaling in Arabidopsis 27 Figures 28 Figure 1. MYB3 & HDA15 act as positive regulators of photomorphogenesis under monochromatic lights. 28 Figure 2. MYB3 and HDA15 act synergistically anthocyanin biosynthesis under JA treatment. 30 Figure 3. MYB3 overexpression lines have an opposite phenotype to its single mutants. 33 Figure 4. MYB3 and HDA15 interact with each other under light and dark conditions. 34 Figure 5. MYB3 affects HY5 to interact with HDA15. 35 Figure 6. MYB3 and HDA15 act as negative regulators of C4H gene expression synergistically under far-red light and MeJA treatment. 36 Figure 7. Proposed model of how MYB3 and HDA15 regulate photomorphogenesis and anthocyanin biosynthesis. 37 References 38 Table 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 花青素 | zh_TW |
| dc.subject | 光形態發生 | zh_TW |
| dc.subject | MYB3 | zh_TW |
| dc.subject | HDA15 | zh_TW |
| dc.subject | HY5 | zh_TW |
| dc.subject | HDA15 | en |
| dc.subject | anthocyanin | en |
| dc.subject | photomorphogenesis | en |
| dc.subject | MYB | en |
| dc.subject | HY5 | en |
| dc.title | 阿拉伯芥MYB3 及HDA15 在遠紅光下調控花青素生合成之功能性研究 | zh_TW |
| dc.title | Functional study of Arabidopsis MYB3 and HDA15 participating in the regulation of anthocyanin biosynthesis under far-red light | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李金美;蔡皇龍;鄭梅君 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Mei Lee;Huang-Lung Tsai;Mei-Chun Cheng | en |
| dc.subject.keyword | MYB3,HDA15,HY5,花青素,光形態發生, | zh_TW |
| dc.subject.keyword | MYB,HDA15,HY5,anthocyanin,photomorphogenesis, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202302832 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
