Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88797Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉浩澧 | zh_TW |
| dc.contributor.advisor | Hao-Li Liu | en |
| dc.contributor.author | 郭晨沅 | zh_TW |
| dc.contributor.author | Chen-Yuan Kuo | en |
| dc.date.accessioned | 2023-08-15T17:49:37Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Y.-s. Kim, H. Rhim, M. J. Choi, H. K. Lim, and D. Choi, “High-intensity focused ultrasound therapy: an overview for radiologists,” Korean journal of radiology, vol. 9,no. 4, pp. 291–302, 2008.
E. D. Sullivan, D. J. Peter, and J. J. Cranley, “Real-time b-mode venous ultrasound,”Journal of Vascular Surgery, vol. 1, no. 3, pp. 465–471, 1984. K. E. Thomenius, “Evolution of ultrasound beamformers,” in 1996 IEEE Ultrasonics Symposium. Proceedings, vol. 2. IEEE, 1996, pp. 1615–1622. G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound b-mode medical imaging,” IEEE transactions on medical imaging, vol. 34, no. 4, pp. 940–949, 2014. C. Coviello, R. J. Kozick, J. J. Choi, M. Gyöngy, J. Collin, C. Jensen,P. Probert Smith, and C. C. Coussios, “Passive acoustic mapping using optimal beamforming for real-time monitoring of ultrasound therapy,” in Proceedings of meetings on acoustics, vol. 19, no. 1. AIP Publishing, 2013. C. R. Jensen, R. W. Ritchie, M. Gyöngy, J. R. Collin, T. Leslie, and C.-C. Coussios, “Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping,” Radiology, vol. 262, no. 1, pp. 252–261, 2012. D. Cacko, M. Walczak, and M. Lewandowski, “Low-power ultrasound imaging on mixed fpga/gpu systems,” in 2018 Joint Conference-Acoustics. IEEE, 2018, pp.1–6. A. A. Assef, J. de Oliveira, J. M. Maia, and E. T. Costa, “Fpga implementation and evaluation of an approximate hilbert transform-based envelope detector for ultrasound imaging using the dsp builder development tool,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019, pp. 2813–2816. G.-D. Kim, C. Yoon, S.-B. Kye, Y. Lee, J. Kang, Y. Yoo, and T.-K. Song, “A single fpga-based portable ultrasound imaging system for point-of-care applications,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 7, pp. 1386–1394, 2012. X. Wu, J. Sanders, X. Zhang, F. Y. Yamaner, and Ö. Oralkan, “A high-frequency and high-frame-rate ultrasound imaging system design on an fpga evaluation board for capacitive micromachined ultrasonic transducer arrays,” in 2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017, pp. 1–4. T. Dezotti, A. C. Martinez, A. A. Assef, J. M. Maia, and E. T. Costa, “Fpga-based reception board of 64-channels ultrasound research platform,” in 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS). IEEE, 2021, pp. 1–4. A. A. Assef, R. A. C. Medeiros, E. D. S. Contieri, J. M. Maia, and E. T. Costa, “An fpga-based 15-level arbitrary waveform generator system with phase/ frequency modulation for ultrasound coded excitation using pulse-amplitude modula tion (pam),” in 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022, pp. 1–4. R. M. Jones, M. A. O'Reilly, and K. Hynynen, “Transcranial passive acoustic mapping with hemispherical sparse arrays using ct-based skull-specific aberration corrections: a simulation study,” Physics in Medicine & Biology, vol. 58, no. 14, p.4981, 2013. L. Deng, M. A. O'Reilly, R. M. Jones, R. An, and K. Hynynen, “A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping,” Physics in Medicine & Biology, vol. 61, no. 24, p. 8476, 2016. S. Bae, K. Liu, A. N. Pouliopoulos, R. Ji, and E. E. Konofagou, “Real-time passive acoustic mapping with enhanced spatial resolution in neuronavigation-guided focused ultrasound for blood–brain barrier opening,” IEEE Transactions on Biomedical Engineering, 2023. L. Deng, M. A. O'Reilly, R. M. Jones, R. An, and K. Hynynen, “Three-dimensional super resolution ultrasound imaging with a multi-frequency hemispherical phased array,” 2023. M. M. Monfared, H. Behnam, P. Rangraz, and J. Tavakkoli, “High-intensity focused ultrasound thermal lesion detection using entropy imaging of ultrasound radio frequency signal time series,” Journal of Medical Ultrasound, vol. 26, no. 1, p. 24, 2018. P. Qin, T. Han, C. Alfred, and L. Xu, “Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery,” Journal of controlled release, vol. 272, pp. 169–181, 2018. S. Lu, R. Li, X. Yu, D. Wang, and M. Wan, “Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation,” Medical Physics, vol. 46, no. 10, pp. 4441–4454, 2019. C.-C. Shen, S.-H. Hsiao, and Y.-C. Lin, “Synthetic transmit aperture beamforming for sound velocity estimation using channel-domain differential phase gradient–a phantom study,” Ultrasonics, vol. 94, pp. 183–191, 2019. G. Cortela, N. Benech, W. Pereira, and C. Negreira, “Characterization of acoustical properties of a phantom for soft tissues (pvcp and graphite powder) in the range 20-45̊c,” Physics Procedia, vol. 70, pp. 179–182, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88797 | - |
| dc.description.abstract | 超音波由於其無創性以及高安全性常用於醫學診斷,近年來用於治療的超音波也逐漸興起。通過使用曲面的聚焦式探頭,超音波可以被集中以產生可以刺激組織或造成熱損傷的聚焦光束。被動聲學測繪 (PAM) 是已被證明可與診斷超音波結合使用的技術,以監測治療並確保安全。然而,PAM 主要與封閉式診斷超音波平台一起使用,這限制了完整治療超音波系統的設計與發展。為了解決這個問題,本研究開發了一種基於現場可程式化邏輯閘陣列 (FPGA) 的超音波治療成像監測系統。透過實驗結果已經證明該系統能夠進行 PAM 成像且能與診斷式超音波探頭結合使用,量測到的數值也與聲場掃描系統一致,並具有低成本、便攜性和高處理能力等優點,該系統可專用於引導治療性超音波。本研究通過使用 FPGA 結合治療超音波,改進了現有的超音波技術,為更先進的醫療程序鋪平了道路。 | zh_TW |
| dc.description.abstract | Ultrasound is widely used in medical diagnosis due to its non-invasive nature and high safety. In recent years, therapeutic ultrasound has gained popularity for its therapeutic applications. By utilizing a curved and focused transducer, ultrasound waves can be concentrated to generate a focused beam capable of stimulating tissues or causing thermal damage. Passive acoustic mapping (PAM) has been proven to be a technique that can be integrated with diagnostic ultrasound to monitor treatments and ensure safety. However, PAM is primarily used with closed diagnostic ultrasound platforms, which limits the development and integration of a complete therapeutic ultrasound system. To address this issue, our study has developed an ultrasound therapeutic imaging monitoring system based on Field-Programmable Gate Array (FPGA) technology. Experimental results have demonstrated that this system is capable of performing PAM imaging while being compatible with diagnostic ultrasound transducers. The measured values are consistent with those obtained from acoustic intensity measurement system. Additionally, the system offers advantages such as low cost, portability, and high processing power. It is specifically designed for guiding therapeutic ultrasound procedures. By employing FPGA technology in conjunction with therapeutic ultrasound, our research has improved upon existing ultrasound techniques, paving the way for more advanced medical procedures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:49:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:49:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 醫用超音波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 超音波成像模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 延遲和加總 (Delay and Sum,DAS) . . . . . . . . . . . . . . . . . . . 4 1.4 被動聲學映射 (Passive Acoustic Mapping,PAM) . . . . . . . . . . . . 5 1.5 超音波現場可程式化邏輯閘陣列 (Field Programmable Gate Array,FPGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 基於 FPGA 的超音波系統回顧 . . . . . . . . . . . . . . . . . . . . . 7 1.7 PAM 演算法回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7.1 經顱波束形成演算法 (2013) . . . . . . . . . . . . . . . . . . . . . 14 1.7.2 顱骨校正波束形成演算法 (2016) . . . . . . . . . . . . . . . . . . 17 1.7.3 基於相干因子的被動聲學映射演算法 (2023) . . . . . . . . . . . 18 1.7.4 多頻半球相控陣三維超解析度被動聲學映射演算法 (2023) . . . 20 1.8 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第二章 研究方法 24 2.1 系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 使用者介面開發 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 系統演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 PAM 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 背景演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 實驗設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 PAM 實驗設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.2 點擴散函數 (Point Spread Function,PSF) 實驗設置 . . . . . . . . 37 2.5 仿體設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 折射衰減設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第三章 實驗結果與討論 39 3.1 點擴散函數實驗分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 演算法成像效果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 兩種算法效果比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 不同脈衝寬度 (Burst Width) 發射數 . . . . . . . . . . . . . . . . 43 3.2.3 不同成像頻率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.4 搭配背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 即時影像分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 聲場能量分布分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 效能分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 運算時間分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 對比雜訊比分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 第四章 結論及未來展望 56 4.1 結果討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 被動聲學成像 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 超音波治療監測 | zh_TW |
| dc.subject | 現場可程式化邏輯閘陣列 | zh_TW |
| dc.subject | Passive Acoustic Mapping (PAM) | en |
| dc.subject | Ultrasound | en |
| dc.subject | FPGA | en |
| dc.subject | Ultrasound Therapy Monitoring | en |
| dc.title | 基於現場可程式化邏輯閘陣列之超音波治療成像監控平台系統開發 | zh_TW |
| dc.title | Development of an FPGA-based Ultrasound Therapy Imaging Monitoring Platform System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉秩光;蔡孟燦;沈哲州 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Kuang Yeh;Meng-Tsan Tsai;Che-Chou Shen | en |
| dc.subject.keyword | 超音波,被動聲學成像,超音波治療監測,現場可程式化邏輯閘陣列, | zh_TW |
| dc.subject.keyword | Ultrasound,Passive Acoustic Mapping (PAM),Ultrasound Therapy Monitoring,FPGA, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202302347 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 7.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
