Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88796
標題: 結合多維度時空因子與都卜勒雷達觀測於區域雨量推估
Integrating Multiple Spatial-temporal Factors and Doppler Radar Observables for Regional Rainfall Estimation
作者: 吳宸瑋
Chen-Wei Wu
指導教授: 韓仁毓
Jen-Yu Han
關鍵字: 雨量推估,多時空因子,都卜勒雷達,多層感知器,長短期記憶,
Rainfall prediction,Multiple spatial-temporal factors,Doppler radar,MLP,LSTM,
出版年 : 2023
學位: 碩士
摘要: 現今全球都因氣候異常而面臨許多災害問題,而這些災害中又以與降雨有關的災害佔最大比例。世界各國為了降低這些因降雨而導致的損失以及增加面對災害時的應變能力,各自都有不同的作為。其中又以成本效益高、施行時間快速的非結構性措施最受各國青睞。為了使非結構性措施能夠有效運用於防災救災,獲取各地正確的降雨是至關重要的依據。目前獲取雨量資訊的主要工具分為雨量站及雷達回波,雨量站能夠直接蒐集雨量資訊,提供準確的點狀資料;雷達回波則是採用間接觀測的方式,將蒐集到的反射率轉換為降雨率,提供具參考性的面狀資料。本研究將利用上述之蒐集與量工具並考慮了其他可能對降雨會產生影響的因子,透過深度學習的方式建立較高準確度的雨量推估模型,也將討論時間序列的模型對於降雨量的推估是否會優於非時間序列模型,透過分別建立非時間序列模型多層感知器(Multi – Layer Perceptron, MLP)及時間序列模型長短期記憶(Long Short – Term Memory, LSTM),得出在記憶時間合宜的情況下,時間序列模型能有更好的結果。針對合宜的時間模擬了18個小時內的情境,得到只記憶4個小時以內的結果與非時間序列模型的結果無顯著上的差異,透過因子重要性排序發現原因為先驗值的貢獻程度低,導致無法發揮時間序列模型的優勢;而記憶至少14個小時的結果則為最佳。另外根據因子重要性排序得到,影響雨量值的主要因素包含經緯度及月份,透過與中央氣象局發行的氣候年報比對,證實了降雨與上述因子確實有著相當的關連性。經上述研究證實,時間序列模型相較於非時間序列模型,對於大雨等級以下的雨量推估有較好的結果,此外將影響降雨的因子納入模型中也能幫助獲得更準確的資訊。
Nowadays, the world is facing numerous disaster issues due to abnormal climate conditions, with rainfall-related disasters comprising the largest proportion among them. Countries around the world have taken various measures to reduce losses caused by rainfall and enhance their resilience in the face of disasters. Nonstructural measures that are cost-effective and can be implemented quickly have gained popularity among countries. To effectively utilize nonstructural measures for disaster prevention and mitigation, obtaining accurate rainfall data is crucial. Currently, the primary tools for obtaining rainfall information are rain gauges and radar echoes. Rain gauges directly collect rainfall information and provide accurate point data; radar echoes, on the other hand, employ an indirect observation method by converting collected reflectivity into rainfall rates, providing informative spatial data for reference. Besides two conventional tools that collect rainfall values, this study also considers other factors that may have an impact on rainfall. This study also combines accurate rainfall station data, informative radar echoes, and multiple spatial-temporal factors affecting rainfall to establish a high-accuracy rainfall estimation model using deep learning techniques. Investigating whether time series models outperform non-time series models in rainfall estimation. Comparion is conducted by separately modeling a non-time series model MLP and a time series model LSTM. Concluded that the time series model demonstrates better performance in rainfall estimation. Furthermore, incorporating the factors influencing rainfall into the model also contributes to obtaining more accurate information.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88796
DOI: 10.6342/NTU202303342
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2028-08-07
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.07 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved