Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88792
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author賴舒妤zh_TW
dc.contributor.authorShu-Yu Laien
dc.date.accessioned2023-08-15T17:48:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] Wang, S., Liu, X. and Zhou, P. (2022) ‘The road for 2D semiconductors in the silicon age’, Advanced Materials, 34(48), p. 2106886.
[2] Tanjil, M.R.-E. et al. (2019) ‘Ångstrom-scale, atomically thin 2D materials for corrosion mitigation and passivation’, Coatings, 9(2), p. 133.
[3] Presutti, D. et al. (2022) ‘Transition metal Dichalcogenides (tmdc)-based nanozymes for biosensing and therapeutic applications’, Materials, 15(1), p. 337.
[4] Chhowalla, M. et al. (2013) ‘The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets’, Nature Chemistry, 5(4), pp. 263–275.
[5] Splendiani, A. et al. (2010) ‘Emerging photoluminescence in monolayer MOS2’, Nano Letters, 10(4), pp. 1271–1275.
[6] Tang, Q. and Jiang, D. (2015) ‘Stabilization and band-gap tuning of the 1T-MOS2 monolayer by covalent functionalization’, Chemistry of Materials, 27(10), pp. 3743–3748.
[7] Aspnes, D.E. and Studna, A.A. (1975a) ‘High precision scanning ellipsometer’, Applied Optics, 14(1), p. 220.
[8] Gardiner, D.J., Graves, P.R. and Bowley, H.J. (1989) Practical raman spectroscopy. Berlin: Springer-Vlg.
[9] Smith, B.C. (2011) Fundamentals of fourier transform infrared spectroscopy. Boca Raton: CRC Press.
[10] Maaz, K. (2012) The transmission electron microscope: Theory and applications. IntechOpen.
[11] Wang, X. and Newton, J. and Shallenberger, J. and Vitarelli, J and Mowat, I and Putyera, K. (2011). ‘Materials Characterization and Problem Solving.’, Ceramic Industry. 14 -18.
[12] Jena, D., Banerjee, K. and Xing, G.H. (2014) ‘Intimate contacts’, Nature Materials, 13(12), pp. 1076–1078.
[13] Cheng, C.-C. et al. (2019) ‘Monolithic heterogeneous integration of BEOL power gating transistors of carbon nanotube networks with Feol Si ring oscillator circuits’, 2019 IEEE International Electron Devices Meeting (IEDM)
[14] Freedy, K.M. et al. (2019) ‘Thermal stability of titanium contacts to MOS2’, ACS Applied Materials; Interfaces, 11(38), pp. 35389–35393.
[15] Liu, X. et al. (2021a) ‘Thin-film electronics based on all-2d van der waals heterostructures’, Journal of Information Display, 22(4), pp. 231–245.
[16] Chiawchan, T. et al. (2021) ‘CVD synthesis of intermediate state-free, large-area and continuous MOS2 via single-step vapor-phase sulfurization of MOO2 precursor’, Nanomaterials, 11(10), p. 2642.
[17] Lv, B., Qian, T. and Ding, H. (2019) ‘Angle-resolved photoemission spectroscopy and its application to topological materials’, Nature Reviews Physics, 1(10), pp. 609–626.
[18] 潘扶民. (2002). XPS 超薄薄膜分析. 科儀新知, 二十四(131).
[19] Kim, J.W. and Kim, A. (2021) ‘Absolute work function measurement by using photoelectron spectroscopy’, Current Applied Physics, 31, pp. 52–59.
[20] Schlettwein, D. (2001) ‘Electronic properties of molecular organic semiconductor thin films’, Supramolecular Photosensitive and Electroactive Materials, pp. 211–338.
[21] Price, K.M. et al. (2017) ‘Uniform growth of sub-5-nanometer high-κ dielectrics on MOS2 using plasma-enhanced atomic layer deposition’, ACS Applied Materials; Interfaces, 9(27), pp. 23072–23080.
[22] Lei, B. et al. (2018) ‘Direct observation of semiconductor–metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization’, ACS Nano, 12(2), pp. 2070–2077.
[23] Periodic Table of elements - pubchem National Center for Biotechnology Information. PubChem Compound Database. (Accessed: 17 July 2023).
[24] Moulder, J.F. and Chastain, J. (1992) Handbook of X-ray Photoelectron Spectroscopy: A reference book of standard spectra for identification and interpretation of XPS Data. Eden Prairie, MN: Perkin-Elmer Corporations, Physical Electronics Division.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88792-
dc.description.abstract本研究中,我們對半金屬錫、銻和鉍與二硫化鉬之間的界面特性進行了光電子能譜測量及詳細分析。結果顯示,這三種半金屬並未與二硫化鉬形成化學鍵結,但它們對電荷轉移表現出不同趨勢,錫表現出明顯的N型摻雜效應;銻對二硫化鉬的電子狀態沒有明顯影響;而鉍則表現出微量的P型摻雜效應。此外,我們對半金屬與二硫化鉬的界面進行了高溫熱穩定性測試,結果顯示在300°C高溫下,純二硫化鉬呈現半高寬變寬的趨勢,表明材料結構受到破壞。我們也注意到隨著金屬的氧化程度不同導致P型摻雜效應產生,但高溫加熱並未在半金屬與二硫化鉬界面產生化學鍵結。
除了半金屬研究,我們還探討了二硫化鉬與不同材料的界面反應,進行了ALD生長介電層應用於二硫化鉬上的實驗,結果發現兩種介電層呈現P型摻雜趨勢,但程度不同,使用Al2O3作為介電層時,觀察到約0.15 eV的P型摻雜效應,而使用HfO2作為介電層時,則觀察到約0.3 eV的P型摻雜效應。接著,我們也研究了不同摻雜劑對二硫化鉬的影響,發現BiI3和KCl具有P型摻雜效應,而NaI和KI則具有N型摻雜效應,LiCl和KBr對二硫化鉬沒有明顯的摻雜效應,且這些摻雜劑與二硫化鉬之間也沒有化學鍵結。最後,我們疊加了另一種二維材料二硒化鎢到二硫化鉬上,並觀察到了P型摻雜的趨勢,進一步驗證了二硒化鎢對二硫化鉬導電性質的影響。這些實驗結果提供了對二硫化鉬的界面關係有深入理解,並為進一步的研究和材料設計提供了有價值的參考。
zh_TW
dc.description.abstractIn this study, we investigated the interface characteristics between semimetals (Tin, Antimony, and Bismuth) and MoS2 using photoelectron spectroscopy. Results revealed no chemical bonding between these semimetals and MoS2, but they displayed distinct charge transfer trends. Tin exhibited significant N-type doping effects, antimony showed no noticeable impact, and bismuth exhibited slight P-type doping effects. Additionally, we conducted high-temperature thermal stability tests on the semimetal/MoS2 interface, indicating structural damage to pure MoS2 at 300°C. Different metal oxidation states contributed to the generation of P-type doping effects, but no chemical bonding occurred at the interface under high-temperature heating.
Beyond the semimetal studies, we explored the interface reactions of MoS2 with different materials. We performed experiments applying dielectric layers (Al2O3 and HfO2) on MoS2, inducing P-type doping effects. Al2O3 led to ~0.15 eV P-type doping, while HfO2 resulted in ~0.3 eV P-type doping. Furthermore, we studied the impact of various dopants on MoS2, finding that BiI3 and KCl acted as P-type dopants, while NaI and KI acted as N-type dopants. Conversely, LiCl and KBr showed no significant doping effects on MoS2, and no chemical bonds formed between these dopants and MoS2. Lastly, we stacked another 2D material, WSe2, on MoS2 and observed P-type doping effects, further confirming the influence of WSe2 on MoS2. These experimental findings provide in-depth insights into the MoS2 interface relationships and offer valuable references for future research and material design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:48:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:48:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
圖目錄 viii
表目錄 xii
Chapter 1 緒論 1
1.1 二維材料簡介 1
1.1.1 摩爾定律極限與瓶頸 1
1.1.2 二維材料優勢與潛力 1
1.2 二硫化鉬簡介 2
1.2.1 過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMDCs) 2
1.2.2 二硫化鉬(MoS2) 3
1.3 材料表面分析儀 4
1.4 研究動機 4
1.4.1 二維材料電晶體結構 4
1.4.2 金屬與二維材料間的界面能障 5
1.4.3 半金屬與二維材料間的界面熱穩定性(Thermal Stability) 6
Chapter 2 實驗儀器與原理 8
2.1 製程設備簡介 8
2.1.1 化學氣相沉積系統 (Chemical Vapor Deposition, CVD) 8
2.1.2 真空熱電阻式蒸鍍機 (Thermal Evaporation) 9
2.1.3 氮氣手套箱(Nitrogen Glove Box) 10
2.1.4 原子層沉積儀 (Atomic Layer Deposition, ALD) 11
2.2 光電子能譜儀(Photoemission Spectroscopy, PES) 11
2.2.1 X射線光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 12
2.2.2 紫外光電子能譜 (Ultraviolet Photoelectron Spectroscopy, UPS) 13
2.2.3 光電子能譜分析 14
2.2.4 真空熱蒸鍍系統與光電子能譜儀(Thermal Evaporation & Photoemission Spectroscopy) 16
2.3 實驗流程 17
2.3.1 蒸鍍金屬 17
2.3.2 聚甲基丙烯酸甲酯 (PMMA)的濕式轉移製程 17
Chapter 3 金屬與二硫化鉬間的界面關係 19
3.1 不同厚度金屬與二硫化鉬的界面關係 19
3.1.1 真空環境下蒸鍍金屬與量測流程 19
3.1.2 金屬錫與二硫化鉬的界面關係 19
3.1.3 金屬銻與二硫化鉬的界面關係 21
3.1.4 金屬鉍與二硫化鉬的界面關係 23
3.2 不同厚度金屬與二硫化鉬的界面熱穩定性 26
3.2.1 金屬變溫測試與量測流程 26
3.2.2 二硫化鉬變溫測試 27
3.2.3 金屬錫的熱穩定性 28
3.2.4 金屬銻的熱穩定性 32
3.2.5 金屬鉍的熱穩定性 36
Chapter 4 其他異質結構與二硫化鉬間的界面關係 41
4.1 介電材料與二硫化鉬間的界面關係 41
4.1.1 利用ALD沉積不同厚度介電材料與量測流程 41
4.1.2 介電材料Al2O3 /HfO2與二硫化鉬的界面關係 41
4.2 摻雜劑與二硫化鉬間的界面關係 42
4.2.1 真空環境下蒸鍍摻雜劑與量測流程 42
4.2.2 P-doping 摻雜劑 44
4.2.3 N-doping 摻雜劑 46
4.2.4 No doping摻雜劑 47
4.3 其他二維材料與二硫化鉬間的界面關係 49
4.3.1 利用PMMA濕式轉移製程轉移二維材料與量測流程 49
4.3.2 二硒化鎢與二硫化鉬間的界面關係 50
Chapter 5 總結 52
參考文獻 53
-
dc.language.isozh_TW-
dc.subject二維材料zh_TW
dc.subject光電子能譜儀zh_TW
dc.subject二硫化鉬zh_TW
dc.subjectX射線光電子能譜zh_TW
dc.subject紫外光電子能譜zh_TW
dc.subjectMolybdenum disulfideen
dc.subjectPESen
dc.subjectX-ray Photoelectron spectroscopyen
dc.subjectTwo-dimensional materialsen
dc.subjectUltraviolet photoelectron spectroscopyen
dc.title二維材料改質與異質界面光電子能譜分析zh_TW
dc.titleAnalysis of Two-dimensional Materials Modification and Hetero-interface Photoelectron Spectroscopyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;張子璿;廖洺漢;陳美杏zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Tzu-Hsuan Chang;Ming-Han Liao;Mei-Hsin Chenen
dc.subject.keyword二維材料,二硫化鉬,光電子能譜儀,X射線光電子能譜,紫外光電子能譜,zh_TW
dc.subject.keywordTwo-dimensional materials,Molybdenum disulfide,PES,X-ray Photoelectron spectroscopy,Ultraviolet photoelectron spectroscopy,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202302556-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
8.58 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved