Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊瑋誠zh_TW
dc.contributor.advisorWei-Cheng Yangen
dc.contributor.author何昀zh_TW
dc.contributor.authorYun Hoen
dc.date.accessioned2023-08-15T17:47:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAbdulmawjood, A., Grabowski, N., Fohler, S., Kittler, S., Nagengast, H., & Klein, G. (2014). Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat. PLOS ONE, 9(6), e100717. https://doi.org/10.1371/JOURNAL.PONE.0100717
Akamine, J. (2021). Tastes for blubber: diversity and locality of whale meat foodways in Japan. Asian Education and Development Studies, 10(1), 105–114. https://doi.org/10.1108/AEDS-02-2020-0027
Amaral A, A. R., Sequeira, M. B., & Coelho A, M. M. (2007). A first approach to the usefulness of cytochrome c oxidase I barcodes in the identification of closely related delphinid cetacean species. 58, 505–510. https://doi.org/10.1071/MF07050
Austin Crannell, Z., Rohrman, B., & Richards-Kortum, R. (2014). Equipment-Free Incubation of Recombinase Polymerase Amplification Reactions Using Body Heat. https://doi.org/10.1371/journal.pone.0112146
Baker, C. S., Cipriano’, F., & Palumbi, S. R. (1996). Molecular genetic identification of whale and dolphin products from commercial markets in Korea and Japan. In Molecular Ecology (Vol. 5). https://doi.org/https://doi.org/10.1111/j.1365-294X.1996.tb00362.x
Baker, C. S., Perry, A., Bannister, J. L., Weinrich, M. T., Abernethy, R. B., Calambokidis, J., Lien, J., Lambertsen, R. H., Urban Ramirez, J., Vasquez, O., Clapham, P. J., Alling, A., O’Brien, S. J., & Palumbi, S. R. (1993). Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. In Proc. Natl. Acad. Sci. USA (Vol. 90). https://doi.org/https://doi.org/10.1073/pnas.90.17.8239
Baker, C. S., Steel, D., Choi, Y., Lee, H., Kim, K. S., Choi, S. K., Ma, Y. U., Hambleton, C., Psihoyos, L., Brownell, R. L., & Funahashi, N. (2010). Genetic evidence of illegal trade in protected whales links JaPan with the US and South Korea. Biology Letters, 6(5), 647–650. https://doi.org/10.1098/RSBL.2010.0239
Barbosa-Filho, M. L. V., Barreto, R. M. F., Siciliano, S., Seminara, C. I., & Costa-Neto, E. M. (2018). Use of cetaceans as bait in Southern Bahia, Brazil, by expert fishermen that market shark fins: A lucrative trade and two threatened zoological groups. Ethnobiology Letters, 9(2), 12–18. https://doi.org/10.14237/ebl.9.2.2018.953
Barbosa-Filho, M. L. V., Costa-Neto, E. M., & Danilewicz, D. (2016). Dolphin harpooning off the coast of Bahia, Brazil. Marine Biodiversity Records, 9(1), 1–3. https://doi.org/10.1186/S41200-016-0046-1/METRICS
Braulik, G. T., Kasuga, M., Wittich, A., Kiszka, J. J., Maccaulay, J., Gillespie, D., Gordon, J., Said, |, Said, S., Philip, |, & Hammond, S. (2017). Cetacean rapid assessment: An approach to fill knowledge gaps and target conservation across large data deficient areas. https://doi.org/10.1002/aqc.2833
Burkett, S., Whittle, E., Katara, I., & Allison, C. (2022). Report of the Scientific Committee (SC68D) Annex F: Catches Reported for the 2021 Season. 2022 Meeting of the Scientific Committee . https://archive.iwc.int/pages/download.php?ref=19447&ext=pdf&alternative=5955&noattach=true&k=
Campbell, E., Pasara-Polack, A., Mangel, J. C., & Alfaro-Shigueto, J. (2020). Use of Small Cetaceans as Bait in Small-Scale Fisheries in Peru. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.534507
Chang, C.-H., Yao, C.-J., Yu, H.-Y., Liao, Y.-C., Jang-Liaw, N.-H., Tsai, C.-L., Shao, K.-T., & Fellow, R. (2014). A molecular forensic method for identifying species composition of processed marine mammal meats. Journal of Forensic and Legal Medicine, 23, 65–69. https://doi.org/10.1016/j.jflm.2014.01.012
Cho, A. R., Dong, H. J., & Cho, S. (2014). Meat species identification using loop-mediated isothermal amplification assay targeting species-specific mitochondrial DNA. Korean Journal for Food Science of Animal Resources, 34(6), 799–807. https://doi.org/10.5851/kosfa.2014.34.6.799
Chou, L.-S., & Jack Yang, W. (2013). Rapid Species Identification of Morphologically Similar Cetacean Species Kogia sima and K. breviceps by High-resolution Melt Analysis. In Article in Pakistan Journal of Zoology. https://www.researchgate.net/publication/256293001
Cooke, J. G. (2018a). Balaenoptera borealis. The IUCN Red List of Threatened Species 2018: e.T2475A130482064. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2475A130482064.en. Accessed on 02 August 2023.
Cooke, J. G. (2018b). Balaenoptera physalus. The IUCN Red List of Threatened Species 2018: e.T2478A50349982. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en. Accessed on 02 August 2023.
Cunha, H. A., Da Silva, V. M. F., Santos, T. E. C., Moreira, S. M., Do Carmo, N. A. S., & Solé-Cava, A. M. (2015). When You Get What You Haven’t Paid for: Molecular Identification of “Douradinha” Fish Fillets Can Help End the Illegal Use of River Dolphins as Bait in Brazil. Journal of Heredity, 106(S1), 565–572. https://doi.org/10.1093/JHERED/ESV040
Da Silva, V. M. F., Nunes, A., Da, J., & Batista, S. (2018). The use of Amazonian dolphins (Inia and Sotalia) as bait for the piracatinga fishery. Workshop on the Poorly Documented Takes of Small Cetaceans of South America, Including in-Depth Review of the Hunting of Boto (Inia Geoffrensis) for the Piracatinga (Calophysus Macropterus) Fishery., 19–21. https://www.researchgate.net/publication/323884400
Daher, R. K., Stewart, G., Boissinot, M., & Bergeron, M. G. (2016). Recombinase Polymerase Amplification for Diagnostic Applications. Clinical Chemistry, 62(7), 947–958. https://doi.org/10.1373/CLINCHEM.2015.245829
de Sá Alves, L. C. P., Zappes, C. A., & Andriolo, A. (2012). Conflicts between river dolphins (cetacea: Odontoceti) and fisheries in the central amazon: A path toward tragedy? Zoologia, 29(5), 420–429. https://doi.org/10.1590/S1984-46702012000500005
Eggert, L. S., Lux, C. A., O’Corry-Crowe, G. M., & Dizon, A. E. (1998). Dried dolphin blood on fishery observer records provides DNA for genetic analyses. Marine Mammal Science, 14(1), 136–143. https://doi.org/10.1111/j.1748-7692.1998.tb00696.x
Endo, T., & Haraguchi, K. (2010). High mercury levels in hair samples from residents of Taiji, a Japanese whaling town. Marine Pollution Bulletin, 60(5), 743–747. https://doi.org/10.1016/J.MARPOLBUL.2009.11.020
Endo, T., Haraguchi, K., & Sakata, M. (2002). Mercury and selenium concentrations in the internal organs of toothed whales and dolphins marketed for human consumption in Japan. Science of The Total Environment, 300(1–3), 15–22. https://doi.org/10.1016/S0048-9697(02)00137-7
Fielding, R., Kiszka, J. J., Macdonald, C., Mccormack, M. A., Dutton, J., Ollivierre, A. D., Arnett, J. A., Elkins, M., Darby, N. A., Garcia, H.-M., Skinner, S., Tucker, H., & Reid, V. (2021a). Demographic and geographic patterns of cetacean-based food product consumption and potential mercury exposure within a Caribbean whaling community. International Journal, 27(6), 1671–1695. https://doi.org/10.1080/10807039.2020.1870865
Fielding, R., Kiszka, J. J., Macdonald, C., Mccormack, M. A., Dutton, J., Ollivierre, A. D., Arnett, J. A., Elkins, M., Darby, N. A., Garcia, H.-M., Skinner, S., Tucker, H., & Reid, V. (2021b). Demographic and geographic patterns of cetacean-based food product consumption and potential mercury exposure within a Caribbean whaling community. Risk Assessment: An International Journal, 27(6), 1671–1695. https://doi.org/10.1080/10807039.2020.1870865
Ghosh, D. K., Kokane, S. B., Kokane, A. D., Warghane, A. J., Motghare, M. R., Bhose, S., Sharma, A. K., & Krishna Reddy, M. (2018). Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of “Candidatus Liberibacter asiaticus.” PLOS ONE, 13(12), e0208530. https://doi.org/10.1371/JOURNAL.PONE.0208530
Guerra, F. M., Trujillo, F., Omacha, F., & Oliveira-Da-Costa, M. (2018). Presence of mercury in river dolphins (Inia and Sotalia) in the Amazon and Orinoco basins: evidence of a growing threat for these species. Scientific Committee, Meetings, SC67B, Slovenia. https://www.researchgate.net/publication/324797185
Guimarães Corrêa Sholl, T., Ferreira do Nascimento, F., Leoncini, O., Rodrigues Bonvicino, C., & Siciliano, S. (2021). Taxonomic identification of dolphin love charms commercialized in the Amazonian region through the analysis of cytochrome b DNA. https://doi.org/10.1017/S002531540800043X
Hsu, Y. H., Yang, W. C., & Chan, K. W. (2021). Bushmeat species identification: Recombinase polymerase amplification (rpa) combined with lateral flow (lf) strip for identification of formosan reeves’ muntjac (muntiacus reevesi micrurus). Animals, 11(2), 1–11. https://doi.org/10.3390/ANI11020426
Ingram, D. J., & Avila, I. C. (2022). Widespread Use of Migratory Megafauna for Aquatic Wild Meat in the Tropics and Subtropics. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.837447
James, A., & Macdonald, J. (2015). Expert Review of Molecular Diagnostics Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. https://doi.org/10.1586/14737159.2015.1090877
Kandel, A. W., & Conard, N. J. (2003). Scavenging and Processing of Whale Meat and Blubber by Later Stone AgePeople of the Geelbek Dunes, Western Cape Province, South Africa. https://doi.org/10.2307/3889306
Kim, M. Y., Nguyen, H. Q., Yi, Y., & Kim, Y. E. (2020). Policy recommendation on whaling, trade and watching of cetaceans (Mammalia Cetacea) in the Republic of Korea. https://doi.org/10.31396/Biodiv.Jour.2020.11.1.255.258
Kitpipit, T., Sittichan, K., & Thanakiatkrai, P. (2014). Direct-multiplex PCR assay for meat species identification in food products. Food Chemistry, 163, 77–82. https://doi.org/10.1016/J.FOODCHEM.2014.04.062
Kumar, B., Nisanth, H. P., Vishnuraj, R. S., & Sutaria, D. (2021). Records on Stranding Events of Cetaceans and Illegal Trade of Dolphins in South Kerala, India. Journal of Aquatic Biology & Fisheries, 9, 1–11. https://www.researchgate.net/publication/353972744
Lee, S.-M., Choi, Y.-Y., Min, M.-S., Lee, H., & Lee, M.-Y. (2019). Molecular species identification of whale meat in South Korean markets. Genetics and Molecular Research, 18(2). https://doi.org/10.4238/gmr18171
Leeney, R. H., Dia, I. M., & Dia, M. (2015). Food, Pharmacy, Friend? Bycatch, Direct Take and Consumption of Dolphins in West Africa. Human Ecology, 105–118. https://doi.org/10.1007/s10745-015-9727-3
Li, J., Macdonald, J., & Von Stetten, F. (2019). Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. In Analyst (Vol. 144, Issue 1, pp. 31–67). Royal Society of Chemistry. https://doi.org/10.1039/c8an01621f
Lin, L., Zheng, Y., Huang, H., Zhuang, F., Chen, H., Zha, G., Yang, P., Wang, Z., Kong, M., Wei, H., Zou, X., & Lin, M. (2021). A visual method to detect meat adulteration by recombinase polymerase amplification combined with lateral flow dipstick. Food Chemistry, 354, 129526. https://doi.org/10.1016/J.FOODCHEM.2021.129526
Lo, C., Chin, L.-T., Chu, C.-S., Wang, Y.-T., Chan, K.-W., & Yang, W.-C. (2013). Rapid Immune Colloidal Gold Strip for Cetacean Meat Restraining Illegal Trade and Consumption: Implications for Conservation and Public Health. https://doi.org/10.1371/journal.pone.0060704
Lobato, I. M., & O’Sullivan, C. K. (2018). Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends in Analytical Chemistry, 98, 19–35. https://doi.org/10.1016/J.TRAC.2017.10.015
Macmillan, D. C., & Han, J. (2011). Cetacean By-Catch in the Korean Peninsula-by Chance or by Design? Human Ecology, 39, 757–768. https://doi.org/10.1007/s10745-011-9429-4
Martin, A. R., & Da Silva, V. M. F. (2021). Amazon river dolphins Inia geoffrensis are on the path to extinction in the heart of their range. Oryx. https://doi.org/10.1017/S0030605320001350
Messier, V., Lévesque, B., Proulx, J. F., Rochette, L., Libman, M. D., Ward, B. J., Serhir, B., Couillard, M., Ogden, N. H., Dewailly, É., Hubert, B., Déry, S., Barthe, C., Murphy, D., & Dixon, B. (2009). Seroprevalence of Toxoplasma gondii Among Nunavik Inuit (Canada). Zoonoses and Public Health, 56(4), 188–197. https://doi.org/10.1111/J.1863-2378.2008.01177.X
Miao, F., Zhang, J., Li, N., Chen, T., Wang, L., Zhang, F., Mi, L., Zhang, J., Wang, S., Wang, Y., Zhou, X., Zhang, Y., Li, M., Zhang, S., & Hu, R. (2019). Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Frontiers in Microbiology, 10(MAY), 1004. https://doi.org/10.3389/FMICB.2019.01004/BIBTEX
Moller, L. M., & Beheregaray, L. B. (2001). Coastal bottlenose dolphins from Southeastern Australia are Tursiops aduncus according to sequences of the mitochondrial DNA control region. Marine Mammal Science, 17(2), 249–263. https://doi.org/https://doi.org/10.1111/j.1748-7692.2001.tb01269.x
Munawar, M. A. (2022). Critical insight into recombinase polymerase amplification technology. Expert Review of Molecular Diagnostics, 22(7), 725–737. https://doi.org/10.1080/14737159.2022.2109964
Nuno, A., Fernandes, C., Guedes, M., Loloum, B., Matos, L., Nazaré, L., & Carvalho, I. (2023). Aquatic wild meat consumption of cetaceans in São Tomé and Príncipe (Gulf of Guinea). Animal Biodiversity and Conservation, 46(1), 25–33. https://doi.org/10.32800/abc.2023.46.0025
Obusan, M. C. M., Villanueva, R. M. D., Siringan, M. A. T., Rivera, W. L., & Aragones, L. V. (2019). Leptospira spp. And Toxoplasma gondii in stranded representatives of wild cetaceans in the Philippines. BMC Veterinary Research, 15(1), 1–14. https://doi.org/10.1186/S12917-019-2112-5/FIGURES/3
Oremus, M., Leqata, J., & Baker, C. S. (2015). Resumption of traditional drive hunting of dolphins in the Solomon Islands in 2013. R. Soc. Open Sci, 2, 140524. https://doi.org/10.1098/rsos.140524
Parsons, E. C. M., & Rose, N. A. (2022). The History of Cetacean Hunting and Changing Attitudes to Whales and Dolphins. In Marine Mammals: the Evolving Human Factor (pp. 219–254). Springer, Cham. https://doi.org/10.1007/978-3-030-98100-6_7
Paula Di Beneditto, A., Laeta, M., Cruz Foundation, O., Alexandra Costa, B., Briceño, Y., Sánchez, L., Trujillo, F., von Fersen, L., & Ramírez, S. (2021). Aquatic Wildmeat Consumption of Guiana Dolphins (Sotalia guianensis) in Lake Maracaibo System, Venezuela. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.625801
Peter Simmonds, M., K-H Stadtlander, C. T., John Wright, A., John Godley, B., Porter, L., & Yu Lai, H. (2017). Marine Mammals in Asian Societies; Trends in Consumption, Bait, and Traditional Use. Bait, and Traditional Use. Front. Mar. Sci, 4, 47. https://doi.org/10.3389/fmars.2017.00047
Pichler, F. B., Dawson, S. M., Slooten, E., & Baker, C. S. (1998). Geographic Isolation of Hector’s Dolphin Populations Described by Mitochondrial DNA Sequences. Conservation Biology, 12(3), 676–682. https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96390.x
Pichler, F. B., Robineau, D., Goodall, R. N. P., Meyer, M. A., Olivarria, C., & Baker, C. S. (2001). Origin and radiation of Southern Hemisphere coastal dolphins (genus Cephalorhynchus). Molecular Ecology, 10, 2215–2223. https://doi.org/https://doi.org/10.1046/j.0962-1083.2001.01360.x
Read, A. J., Drinker, P., & Northridge, S. (2006). Bycatch of Marine Mammals in U.S. and Global Fisheries. Conservation Biology, 20(1), 163–169. https://doi.org/10.1111/j.1523-1739.2006.00338.x
Riarte, V. I., & Marmontel, A. M. (2013). Insights on the use of dolphins (boto, Inia geoffrensis and tucuxi, Sotalia fluviatilis) for bait in the piracatinga (Calophysus macropterus) fishery in the western Brazilian Amazon. Journal of Cetacean Research and Management, 13(2), 163–173. https://doi.org/https://doi.org/10.47536/jcrm.v13i2.546
Robards, M. D., & Reeves, R. R. (2011). The global extent and character of marine mammal consumption by humans: 1970–2009. Biological Conservation, 144(12), 2770–2786. https://doi.org/10.1016/J.BIOCON.2011.07.034
Rosel, R. E., Dizon, A. E., Heyning, J. E., & Rose, R. E. (1994). Genetic analysis of sympatric morphotypes of common dolphins (genus Delphinus). Marine Biology, 119, 159–167. https://doi.org/https://doi.org/10.1007/BF00349552
Rosser, A., Rollinson, D., Forrest, M., & Webster, B. L. (2015). Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasites and Vectors, 8(1), 1–5. https://doi.org/10.1186/S13071-015-1055-3/TABLES/2
Secchi, E., Santos, M. C. de O., & Reeves, R. (2018). Sotalia guianensis (errata version published in 2019). The IUCN Red List of Threatened Species 2018: e.T181359A144232542. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T181359A144232542.en. Accessed on 02 August 2023.
Segniagbeto, G. H., Ayissi, I., Bamy, I. L., Debrah, J., Djiba, A., Dossou-Bodjrenou, J., Kwabena Ofori-Danson, P., Samba, A., Bilal, O., Sohou, Z., Tchibozo, S., Uwagbae, M., & Waerebeek, K. Van. (2019). On the utilisation of by-caught, hunted and stranded cetaceans in West Africa. Document SC/May19/AAWW/04, IWC Scientific Committee Meeting. Nairobi. https://www.researchgate.net/profile/Koen_Van_Waerebeek/publication/334249267_On_the_utilisation_of_by-caught_hunted_and_stranded_cetaceans_in_West_Africa/links/5d1edb84a6fdcc2462c10881/On-the-utilisation-of-by-caught-hunted-and-stranded-cetaceans-in-West-Africa.pdf
Shinoda, N., Yoshida, T., Kusama, T., Takagi, M., Onodera, T., & Sugiura, K. (2009). Development of Primers for Detection of Heat-Treated Cetacean Materials in Porcine Meat and Bone Meal. Journal of Food Protection, 72(7), 1496–1499. https://doi.org/10.4315/0362-028X-72.7.1496
Siciliano, S., Viana, M. C., Emin-Lima, R., & Bonvicino, C. R. (2018). Dolphins, love and enchantment: Tracing the use of cetacean products in Brazil. Frontiers in Marine Science, 5(APR), 107. https://doi.org/10.3389/FMARS.2018.00107/BIBTEX
Spadiut, O., Capone, S., Krainer, F., Glieder, A., & Herwig, C. (2013). Microbials for the production of monoclonal antibodies and antibody fragments. Trends in Biotechnology, 32(1), 54–60. https://doi.org/10.1016/j.tibtech.2013.10.002
Sul, S. Y., Kim, M. J., & Kim, H. Y. (2019). Development of a direct loop-mediated isothermal amplification (LAMP) assay for rapid and simple on-site detection of chicken in processed meat products. Food Control, 98, 194–199. https://doi.org/10.1016/J.FOODCONT.2018.11.025
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120
Thomas, P. O., Reeves, R. R., & Brownell, R. L. (2016). Status of the world’s baleen whales. Marine Mammal Science, 32(2), 682–734. https://doi.org/10.1111/MMS.12281
Tryland, M., Nesbakken, T., Robertson, L., Grahek-Ogden, D., & Lunestad, B. T. (2014). Human Pathogens in Marine Mammal Meat-A Northern Perspective. Zoonoses and Public Health, 61, 377–394. https://doi.org/10.1111/zph.12080
Tu, P. A., Shiu, J. S., Lee, S. H., Pang, V. F., Wang, D. C., & Wang, P. H. (2017). Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection. Journal of Virological Methods, 243, 98–104. https://doi.org/10.1016/J.JVIROMET.2017.01.023
Van Bressem, M.-F., Raga, J. A., Di Guardo, G., Jepson, P. D., Duignan, P. J., Siebert, U., Barrett, T., de Oliveira Santos, M. C., Moreno, I. B., & Siciliano, S. (2009). Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Diseases of Aquatic Organisms, 86(2), 143–157. https://doi.org/https://doi.org/10.3354/dao02101
Wang, W.-C., Kreb, D., Hovel, K. A., Mintzer, V. J., Diniz, K., & Frazer, T. K. (2018). The Use of Aquatic Mammals for Bait in Global Fisheries. Frontiers in Marine Science, 1. https://doi.org/10.3389/fmars.2018.00191
Weihe, P., & Joensen, H. D. (2012). Dietary recommendations regarding pilot whale meat and blubber in the Faroe Islands. International Journal of Circumpolar Health, 71(1), 1–5. https://doi.org/10.3402/IJCH.V71I0.18594
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88789-
dc.description.abstract人類對鯨豚的利用已存續非常久,包括作為食用、魚餌以及其他傳統用途。儘管大多國家皆有關於鯨豚利用的法規,非法事件仍經常被揭露,大至鬚鯨小至鼠海豚皆受到影響。然而非法使用鯨豚的規模仍不清楚,使特定物種的存續受到威脅。此外,由於鯨豚製品含有較高的污染累積及人畜共通之病原,食用鯨豚製品對公眾健康存有風險。聚合酶連鎖反應(PCR)搭配定序、快速免疫分析過去皆作為鯨豚肉辨識之工具,但仍受到專業實驗器材、操作人員及樣本新鮮程度需求等限制。
在此研究中,利用重組酶聚合酶擴增(Recombinase Polymerase Amplification, RPA)搭配二合一試紙,研發出一套辨識鯨豚肉及其他組織的可攜式檢驗套組。從鯨豚樣本中粗萃的DNA會由兩對專一的引子擴增,針對粒線體控制區的基因,兩者目標分別為所有鯨豚共有之序列以及鬚鯨獨有之序列。粗萃之DNA在攝氏30至40度間藉由RPA反應十分鐘以擴增,擴增之產物利用試紙可於五分鐘內判讀結果。雙陽性之結果代表受檢驗之產製品源自鬚鯨,而單陽性之結果則代表其源自齒鯨。此套組可正確檢驗四種鬚鯨、十一種齒鯨、海豹、鮪魚和其他六種常見家禽、家畜。與利用蛋白質之免疫分析法相比,此套組亦可檢測經水煮、清炒過的肉品。
藉由此可攜式檢驗套組,不僅能提升可疑產製品檢驗的效率,亦有助於全面的實地調查。此外,檢驗套組也可增進對於非法買賣及消費鯨豚產製品管道的了解,進而對特定鯨豚物種保育及管理政策的建立有所幫助。
zh_TW
dc.description.abstractHuman utilization of cetaceans has persisted for a long time, including food consumption, fishery baits and traditional use. Despite the fact that legislation regarding cetacean use exist in most countries, illegal events were continuously disclosed, affecting numerous species from large whales to small porpoises. Yet the scale of illegal exploitation remained unclear, posing potential threat to the sustainability of certain species. In addition, public health is put at risk regarding the consumption of cetacean-based food products due to high contamination level and zoonotic pathogens. PCR with sequencing and rapid immunoassay were provided as tools for cetacean identification in previous research, but there existed several limitations like demands for laboratory equipment, trained analysts and fresh samples.
We developed a portable detection tool set to identify cetacean meat and other tissues based on recombinase polymerase amplification (RPA) with dual lateral flow strip (LF). The DNA crudely extracted from cetacean samples was amplified by two pairs of specific primers based on its mitochondrial control region, with one targeting sequences of all cetacean species and the other targeting only sequences of baleen whales. The DNA was amplified for 10 min at a constant temperature ranging from 30 to 40°C using RPA. Then the amplification products were visualized on the dual LF strip within 5 min. A double positive result indicated that the inspected product belonged to baleen whales while a single positive result implied that belonging to toothed whales. This duplex RPA-LF assay accurately identified four species of baleen whale, 11 species of toothed whales, harbor seal, tuna and six domestic animal species. Compared with protein-based immunoassay, this duplex RPA-LF assay was also effective when using boiled and pan-fried samples.
With this portable and accessible detection tool set, inspecting suspicious cetacean products may become more efficient and facilitate the implementation of an extensive field survey. Moreover, it can improve the understanding of the pathway of illegal trade and consumption of cetacean products. A more comprehensive insight of the cetacean consumption is essential for establishing feasible management policy toward certain vulnerable species.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:47:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:47:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Materials and methods 6
2.1 Primer design 6
2.2 Sample collection 6
2.3 Purified DNA extraction 7
2.4 PCR reaction 7
2.5 Lateral flow design 8
2.6 Optimization of RPA reaction 8
2.7 Field assay protocol 9
2.8 Sensitivity and specificity evaluation 10
2.9 Preparation of cooked meat 10
Chapter 3 Results 21
3.1 Comparison of different DNA extraction methods 21
3.2 Optimization of RPA assay 21
3.3 Sensitivity and specificity evaluation 23
3.4 Comparison of test results using different processed samples and strip design 23
Chapter 4 Discussion 29
REFERENCE 37
-
dc.language.isoen-
dc.subject二合一側流試紙zh_TW
dc.subject重組酶聚合酶擴增zh_TW
dc.subject非法買賣zh_TW
dc.subject鯨豚產製品zh_TW
dc.subject鬚鯨zh_TW
dc.subject公共衛生zh_TW
dc.subjectBaleen whalesen
dc.subjectPublic healthen
dc.subjectRecombinase Polymerase Amplificationen
dc.subjectIllegal tradeen
dc.subjectCetacean producten
dc.subjectDual lateral flow stripen
dc.title利用重組酶聚合酶擴增結合側流試紙研發可攜式鯨豚產製品檢測套組zh_TW
dc.titleDevelopment of a Portable Identification Tool Set Using Recombinase Polymerase Amplification (RPA) with Lateral Flow Strip (LF) for Cetacean Productsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王浩文;詹昆衛zh_TW
dc.contributor.oralexamcommitteeHao-Ven Wang;Kun-Wei Chanen
dc.subject.keyword鯨豚產製品,鬚鯨,非法買賣,公共衛生,重組酶聚合酶擴增,二合一側流試紙,zh_TW
dc.subject.keywordCetacean product,Baleen whales,Illegal trade,Public health,Recombinase Polymerase Amplification,Dual lateral flow strip,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202302699-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved