Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author徐銘俊zh_TW
dc.contributor.authorMing-Chun Hsuen
dc.date.accessioned2023-08-15T17:46:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-03-
dc.identifier.citation[1] E. Gerstner, "Nobel prize 2010: Andre geim & konstantin novoselov," Nature Physics, vol. 6, no. 11, pp. 836-836, 2010.
[2] A. K. Geim, "Graphene: status and prospects," science, vol. 324, no. 5934, pp. 1530-1534, 2009.
[3] V. Shanmugam et al., "A review of the synthesis, properties, and applications of 2D materials," Particle & Particle Systems Characterization, vol. 39, no. 6, p. 2200031, 2022.
[4] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, "Promises and prospects of two-dimensional transistors," Nature, vol. 591, no. 7848, pp. 43-53, 2021.
[5] B. Doyle et al., "High performance fully-depleted tri-gate CMOS transistors," IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265, 2003.
[6] V. P. Trivedi and J. G. Fossum, "Scaling fully depleted SOI CMOS," IEEE Transactions on Electron devices, vol. 50, no. 10, pp. 2095-2103, 2003
[7] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano letters, vol. 8, no. 2, pp. 405-410, 2008.
[8] E. Gusev et al., "Ultrathin high-K gate stacks for advanced CMOS devices," in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), 2001: IEEE, pp. 20.1. 1-20.1. 4.
[9] I. Ferain, C. A. Colinge, and J.-P. Colinge, "Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors," Nature, vol. 479, no. 7373, pp. 310-316, 2011.
[10] M. Chhowalla, D. Jena, and H. Zhang, "Two-dimensional semiconductors for transistors," Nature Reviews Materials, vol. 1, no. 11, pp. 1-15, 2016.
[11] Y. Liu, X. Duan, Y. Huang, and X. Duan, "Two-dimensional transistors beyond graphene and TMDCs," Chemical Society Reviews, vol. 47, no. 16, pp. 6388-6409, 2018.
[12] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature chemistry, vol. 5, no. 4, pp. 263-275, 2013.
[13] W. Li et al., "Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices," Nature Electronics, vol. 2, no. 12, pp. 563-571, 2019.
[14] J. Wang et al., "Integration of high‐k oxide on MoS2 by using ozone pretreatment for high‐performance MoS2 top‐gated transistor with thickness‐dependent carrier scattering investigation," small, vol. 11, no. 44, pp. 5932-5938, 2015.
[15] J. Yang et al., "Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment," ACS applied materials & interfaces, vol. 5, no. 11, pp. 4739-4744, 2013.
[16] L. Cheng et al., "Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone," ACS applied materials & interfaces, vol. 6, no. 15, pp. 11834-11838, 2014.
[17] X. Zou et al., "Interface engineering for high‐performance top‐gated MoS2 field‐effect transistors," Advanced materials, vol. 26, no. 36, pp. 6255-6261, 2014.
[18] Q. Qian et al., "Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer," Scientific reports, vol. 6, no. 1, p. 27676, 2016.
[19] J. H. Park et al., "Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine," ACS nano, vol. 10, no. 7, pp. 6888-6896, 2016.
[20] H. Kim et al., "Ultrathin monolithic HfO2 formed by Hf-seeded atomic layer deposition on MoS2: Film characteristics and its transistor application," Thin Solid Films, vol. 673, pp. 112-118, 2019.
[21] K. M. Price, K. E. Schauble, F. A. McGuire, D. B. Farmer, and A. D. Franklin, "Uniform growth of sub-5-nanometer high-κ dielectrics on MoS2 using plasma-enhanced atomic layer deposition," ACS applied materials & interfaces, vol. 9, no. 27, pp. 23072-23080, 2017.
[22] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No. 00TH8486), 2000, vol. 1: IEEE, pp. 371-374.
[23] H.-Y. Chang, W. Zhu, and D. Akinwande, "On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals," Applied Physics Letters, vol. 104, no. 11, 2014.
[24] A. Pacheco-Sanchez, M. Claus, S. Mothes, and M. Schröter, "Contact resistance extraction methods for short-and long-channel carbon nanotube field-effect transistors," Solid-State Electronics, vol. 125, pp. 161-166, 2016.
[25] H. Kyeom Kim, I.-H. Yu, J. H. Lee, T. J. Park, and C. Seong Hwang, "Scaling of equivalent oxide thickness of atomic layer deposited HfO2 film using RuO2 electrodes suppressing the dielectric dead-layer effect," Applied Physics Letters, vol. 101, no. 17, 2012.
[26] D. A. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, and G. Timp, "The electronic structure at the atomic scale of ultrathin gate oxides," Nature, vol. 399, no. 6738, pp. 758-761, 1999.
[27] M. Stengel and N. A. Spaldin, "Origin of the dielectric dead layer in nanoscale capacitors," Nature, vol. 443, no. 7112, pp. 679-682, 2006.
[28] Z. Lu et al., "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, vol. 14, no. 1, p. 2340, 2023.
[29] P.-C. Shen et al., "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, vol. 593, no. 7858, pp. 211-217, 2021.
[30] A.-S. Chou et al., "Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 7.2. 1-7.2. 4.
[31] D. Lin et al., "Dual gate synthetic WS 2 MOSFETs with 120μS/μm Gm 2.7 μF/cm 2 capacitance and ambipolar channel," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 3.6. 1-3.6. 4.
[32] K. Xu et al., "Sub-10 nm nanopattern architecture for 2D material field-effect transistors," Nano Letters, vol. 17, no. 2, pp. 1065-1070, 2017.
[33] Y. Xu et al., "Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors with a van der Waals interface," 2022.
[34] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf0.5Zr0.5O2 thin films: A review of recent advances," Jom, vol. 71, pp. 246-255, 2019.
[35] W. Chakraborty et al., "Higher-k zirconium doped hafnium oxide (HZO) trigate transistors with higher DC and RF performance and improved reliability," in 2021 Symposium on VLSI Technology, 2021: IEEE, pp. 1-2.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88786-
dc.description.abstract本論文主要探討藉由原子層沉積 (ALD) 生長高介電係數的介電層藉以微縮二硫化鉬電晶體的等效氧化層厚度 (EOT) 並且同時改善次臨界擺幅 (SS),進一步提升閘極的控制能力。
第一部分為建立一個穩定生長High-k的ALD製程,主要為生長HfO2介電層,會先使用MIM平行板結構對不同生長溫度及厚度的生長參數做電容-電壓的量測來確認生長的品質,接著會先使用兩種介電層來製作以半金屬 (銻Sb) 作為接觸電極的全背閘極短通道 (Lch=50nm) 元件,一種為氮化矽基板100nm,另一種為ALD生長的HfO2介電層,我們利用HfO2微縮了等效氧化層厚度,使閘極控制能力提升進而降低了次臨界擺幅,同時也維持了和使用氮化矽基板一樣的高導通電流。
第二部分藉由更換上閘極的結構來進一步提升閘極的控制能力,為了著重於通道材料而減少接觸電阻的影響,我們先對長通道 (Lch=2µm) 的上閘極電晶體進行研究。其中我們透過0.7nm的鋁種子層成功改善了High-k經由ALD在二維材料上沉膜不均勻的問題,達到低漏電的要求 (<1x10-5 A/cm2)。同時間我們對其進行介電層的後退火,降低介面缺陷密度 (Dit) 改善了介電層的品質,次臨界擺幅約140 (mV/decade) ,提升了元件的開關效率。
第三部分為了解決HfO2在縮小厚度時介電常數下降造成EOT無法有效微縮的問題,而會對更高k值的介電層 (HZO) 進行探討,其更高的介電常數成功將EOT下降至1.2nm。
本研究使用ALD生長High-k材料於二硫化鉬電晶體中並結合後退火提升了元件的開關特性,製備出了低功耗、低 EOT的二硫化鉬上閘極電晶體。
zh_TW
dc.description.abstractIn this thesis,we discusses the use of atomic layer deposition (ALD) to grow high dielectric constant (High-k) dielectric layers for scaling down the equivalent oxide thickness (EOT) of molybdenum disulfide (MoS2) field-effect transistors (FETs) while improving the subthreshold swing (SS) and enhancing the gate control capability.
The first part involves establishing a stable ALD process for growing a High-k dielectric layer, primarily HfO2. Capacitance-Voltage measurements using a Metal-Insulator-Metal (MIM) parallel plate structure are performed to characterize the quality of the grown films at different growth temperatures and thicknesses. Subsequently, two dielectric layers, one with a 100nm silicon nitride substrate and the other with ALD-grown HfO2, are utilized to fabricate Global Back-Gate short channel (Lch=50nm) devices with a semimetal (Antimony, Sb) serving as the contact electrode. By scaling down the effective oxide thickness through HfO2 deposition, the gate control capability is enhanced, leading to reduced subthreshold swing while maintaining high on-state current similar to devices using a silicon nitride substrate.
In the second part, we further enhanced the control capability of the gate by changing the structure of the Top-Gate. To reduce the impact of contact resistance and focus on the channel material, we conducted research on the Top-Gate transistor of a long-channel device (Lch=2µm). Through the implementation of a 0.7nm aluminum seed layer, we successfully addressed the issue of non-uniform deposition of High-k material on the two-dimensional surface using Atomic Layer Deposition (ALD), achieving the requirement for low leakage current (<1x10-5 A/cm2). At the same time, we performed post-annealing of the dielectric layer to reduce the interface defect density (Dit) and improve the quality of the dielectric layer. The subthreshold swing was approximately 140 (mV/decade), leading to an improvement in the switching efficiency of the device.
In the third part, to overcome the problem of ineffective EOT scaling due to the decrease in dielectric constant when reducing the thickness of HfO2 , we investigate dielectric layers with higher dielectric constants (HZO). Due to its higher dielectric constant, the EOT is successfully reduced to 1.2nm.
This study utilizes ALD to grow High-k materials in molybdenum disulfide transistors and combines post-annealing to enhance the device's switching characteristics, resulting in low-power, low EOT molybdenum disulfide FETs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:46:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:46:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xiv
Chapter 1 緒論 1
1.1 二維材料簡介 1
1.1.1 半導體摩爾定律與發展 2
1.1.2 二維材料之優勢 4
1.2 過渡金屬二硫族化合物 7
1.2.1 二硫化鉬晶格能帶與基本特性 8
1.2.2 化學氣相沉積法製備二硫化鉬 10
1.3 高介電常數材料 11
1.3.1 介電常數與氧化層電容 11
1.3.2 高介電係數材料與等效氧化層厚度 14
1.4 研究動機 15
1.4.1 高介電係數材料與二維材料電晶體 15
1.4.2 沉積高介電常數材料在二維材料上不均勻的問題 18
Chapter 2 實驗儀器與理論 20
2.1 製程儀器 20
2.1.1 低壓化學氣相沉積法製備單層二硫化鉬 20
2.1.2 快速熱退火 21
2.1.3 步進式曝光機 21
2.1.4 氦離子束微影 22
2.1.5 原子層沉積 24
2.1.6 電子束蒸鍍機 26
2.1.7 氧電漿清洗機 28
2.2 量測儀器 29
2.2.1 原子力顯微鏡 29
2.2.2 拉曼光譜分析儀 31
2.2.3 電性量測系統 32
2.2.4 穿透式電子顯微鏡 32
2.2.5 橢圓偏振儀 33
2.3 電性參數萃取 34
2.3.1 臨界電壓 34
2.3.2 場效遷移率、本質遷移率與接觸電阻 36
2.3.3 次臨界擺幅、介面缺陷密度 41
2.4 實驗方法 44
2.4.1 原子層沉積及(金屬/介電層/金屬)電容結構 44
2.4.2 濕式轉移單層二硫化鉬 47
2.4.3 二硫化鉬全背閘極電晶體 49
2.4.4 二硫化鉬上閘極電晶體 50
Chapter 3 改善全背閘極之閘極控制能力 53
3.1 二氧化鉿在不同厚度及溫度下之特性 53
3.2 等效氧化層厚度的微縮 61
Chapter 4 上閘極二硫化鉬電晶體 66
4.1 鋁種子層改善High-k沉膜性 66
4.2 二氧化鉿介電層 70
4.3 上閘極介電層後退火 76
Chapter 5 Higher-k 介電層 79
5.1 氧化鋯鉿介電層 79
Chapter 6 總結與未來展望 91
Reference 93
-
dc.language.isozh_TW-
dc.subject介電層後退火zh_TW
dc.subject二硫化鉬zh_TW
dc.subject半金屬銻zh_TW
dc.subject鋁種子層zh_TW
dc.subject高介電係數材料zh_TW
dc.subject原子層沉積zh_TW
dc.subjectAtomic layer deposition (ALD)en
dc.subjectHigh dielectric constant materialsen
dc.subjectDielectric layer post-annealingen
dc.subjectAluminum seeding layeren
dc.subjectMolybdenum Disulfide (MoS2)en
dc.subjectSemi-metal antimony (Sb)en
dc.title探討單層二硫化鉬上閘極電晶體透過微縮等效氧化層厚度改善次臨界擺幅之研究zh_TW
dc.titleInvestigate the Improvement of Subthreshold Swing in Monolayer MoS2 Top-Gate Transistors with Scaled EOTen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;張子璿;廖洺漢;陳美杏zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Tzu-Hsuan Chang;Ming-Han Liao;Mei-Hsin Chenen
dc.subject.keyword二硫化鉬,半金屬銻,鋁種子層,高介電係數材料,原子層沉積,介電層後退火,zh_TW
dc.subject.keywordMolybdenum Disulfide (MoS2),Semi-metal antimony (Sb),Aluminum seeding layer,High dielectric constant materials,Atomic layer deposition (ALD),Dielectric layer post-annealing,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202302836-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-08-03-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
28.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved