請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88778
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 駱尚廉 | zh_TW |
dc.contributor.advisor | Shang-Lien Lo | en |
dc.contributor.author | 何姿萱 | zh_TW |
dc.contributor.author | Tzu-Hsuan Ho | en |
dc.date.accessioned | 2023-08-15T17:44:55Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] 國家發展委員會, 臺灣2050淨零排放路徑及策略總說明, (2022).
[2] 環保署環境檢驗所, 水中全氟與多氟化合物檢測方法-液相層析串聯式質譜儀法, (2020). [3] 環保署環境檢驗所, 土壤中全氟與多氟化合物檢測方法-液相層析串聯式質譜儀法, (2020). [4] 經濟部, 2022 年中小企業白皮書, 第一版第一刷, 經濟部中小企業處, 臺北市, 2022. [5] 經濟部國際貿易局, 中華民國進出口貿易統計. https://cuswebo.trade.gov.tw/ [6] 立法院, 制定環境部組織法. https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=33324&pid=229148 [7] 法務部全國法規資料庫, 中小企業認定標準. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0140003 [8] 法務部全國法規資料庫, 耗水費徵收辦法. https://law.moj.gov.tw/LawClass/LawAll.aspx?PCODE=J0110112 [9] F.W.Gibbs, The history of the manufacture of soap, Ann. Sci. 4 (1939) 169–190. [10] G.Kutney, Sulfur: History, Technology, Applications and Industry, Chem Tex Publishing, Toronto, 2023. [11] R.Carson, Silent Spring, Houghton Mifflin, 1962. [12] L.G.T.Gaines, Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review, Am. J. Ind. Med. (2022) 353–378. [13] R.Dams, K.Hintzer, Fluorinated Polymers: Vol. 2: Applications, The Royal Society of Chemistry, 2016. [14] A.G.Paul, K.C.Jones, A.J.Sweetman, A first global production, emission, and environmental inventory for perfluorooctane sulfonate, Environ. Sci. Technol. 43 (2009) 386–392. [15] N.Rich, The Lawyer Who Became DuPont’s Worst Nightmare, New York Times. (2016) 1–23. [16] J.E.Galloway, A.V.P.Moreno, A.B.Lindstrom, M.J.Strynar, S.Newton, A.A.May, A.A.May, L.K.Weavers, L.K.Weavers, Evidence of Air Dispersion: HFPO-DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility, Environ. Sci. Technol. 54 (2020) 7175–7184. [17] R.Bilott, Exposure: Poisoned Water, Corporate Greed, and One Lawyer’s Twenty-Year Battle against DuPont, Simon and Schuster, 2019. [18] OECD, Hazard Assesment of PFOS and its salts, ENV/JM/RD(2002)17/FINAL. (2002) 362. [19] The European Parlament and the Council of the European Union, Directive 2006/122/ECOF perfluorooctane sulfonates, Regulation. (2006) 166–168. [20] ICCM, Resolution adopted on 6 February 2006 by the International Conference on Chemicals Management at its first session, Dubai, United Arab Emirates, 4-6 February 2006 Implementation arrangements, 23 (2020) 4–6. [21] UNEP, Strategic Approach to International Chemicals Management (SAICM), 2007. [22] UNEP, Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the work of its fourth meeting, United Nations Environ. Program. Stock. Conv. Persistent Org. Pollut. Geneva. (2009) 112. [23] WTO, WTO Agreement on Technical Barriers to Trade, WHO Drug Inf. 12 (1998) 213–215. [24] NSTC, Per- and polyfluoroalkyl substances (PFAS) report, 2023. [25] L.Ritter, K.R.Solomon, J.Forget, M.Stemeroff, C.O’Leary, A Review of Selected Persistent Organic Pollutants, Apostila. (1995) 1–149. [26] UNEP, An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment, 2020. [27] EU, The European Green Deal, Eur. Comm. 53 (2019) 24. [28] EU, The EU chemical strategy for sustainability towards a toxic-free environment, Chim. Oggi/Chemistry Today. 39 (2021) 40–41. [29] EU, Proposal for a Regulation amending Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures, 0432 (2016) 1–23. [30] EU, Commission sets up rules to identify endocrine disruptors and long-lasting chemicals and to improve labelling, (2022). [31] USEPA, PFAS Strategic Roadmap: EPA’s Commitments to Action 2021-2024, Epa. 4 (2016) 1–23. [32] K.Kannan, J.Koistinen, K.Beckmen, T.Evans, J.F.Gorzelany, K.J.Hansen, P.D.Jones, E.Helle, M.Nyman, J.P.Giesy, Accumulation of perfluorooctane sulfonate in marine mammals, Environ. Sci. Technol. 35 (2001) 1593–1598. [33] Z.Wang, A.M.Buser, I.T.Cousins, S.Demattio, W.Drost, O.Johansson, K.Ohno, G.Patlewicz, A.M.Richard, G.W.Walker, G.S.White, E.Leinala, A New OECD Definition for Per- And Polyfluoroalkyl Substances, Environ. Sci. Technol. 55 (2021) 15575–15578. [34] OECD, Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance, OECD Ser. Risk Manag. - No.61. (2021) 1–45. [35] E.Panieri, K.Baralic, D.Djukic-Cosic, A.B.Djordjevic, L.Saso, PFAS Molecules: A Major Concern for the Human Health and the Environment, Toxics. 10 (2022) 1–55. [36] C.O.R.Atkins, F.Carey, Organic chemistry: a brief course, Mc Graw-Hill, 2013. [37] OECD, SYNTHESIS PAPER ON PER- AND POLYFLUORINATED CHEMICALS (PFCS), Environ. Heal. Safety, Environ. Dir. OECD. (2013) 1–60. [38] 3M, the Science of Organic, (1999). [39] M.P.KRAFFT, Highly fluorinated compounds induce phase separation in, and nanostructuration of liquid media. Possible impact on, and use in chemical reactivity control, J. Polym. Sci. Part A Polym. Chem. 46 (2008) 7207–7224. [40] J.Reinikainen, N.Perkola, L.Äystö, J.Sorvari, The occurrence, distribution, and risks of PFAS at AFFF-impacted sites in Finland, 829 (2022). [41] Danish Environmental Protection Agency, Perfluoroalkylated substances: PFOA, PFOS and PFOSA Evaluation of health hazards and proposal of a health based quality criterion for drinking water, soil and ground water, (2015). [42] IARC, Some chemicals used as solvents and in polymer manufacture, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2016. [43] D.Schrenk, M.Bignami, L.Bodin, J.K.Chipman, J.delMazo, B.Grasl-Kraupp, C.Hogstrand, L.Hoogenboom, J.C.Leblanc, C.S.Nebbia, E.Nielsen, E.Ntzani, A.Petersen, S.Sand, C.Vleminckx, H.Wallace, L.Barregård, S.Ceccatelli, J.P.Cravedi, T.I.Halldorsson, L.S.Haug, N.Johansson, H.K.Knutsen, M.Rose, A.C.Roudot, H.VanLoveren, G.Vollmer, K.Mackay, F.Riolo, T.Schwerdtle, Risk to human health related to the presence of perfluoroalkyl substances in food, EFSA J. 18 (2020). [44] USEPA, Health Effects Support Document for Perfluoroocatane Sulfonate (PFOS), United States Environ. Prot. Agency. (2016) 1–245. [45] USEPA, Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3), (2018) 1–151. [46] ATSDR, Toxicological Profile for Perfluoroalkyls - Release May 2021, Agency Toxic Subst. Dis. Regist. (2021) 1–993. [47] J.Delbeke, A.Runge-Metzger, Y.Slingenberg, J.Werksman, The paris agreement, Towar. a Clim. Eur. Curbing Trend. (2019) 24–45. [48] IPCC, Summary for Policymakers. In: Global Warming of 1.5°C: An IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Pover, Glob. Warm. 1.5°C. (2018) 1–24. [49] Ministry of the Environment and Energy, The Swedish Climate Policy Framework, Gov. Off. Sweden. (2018) 1–5. [50] World Meteorological Organization, Preliminary data shows hottest week on record. Unprecedented sea surface temperatures and Antarctic sea ice loss, World Meteorol. Organ. (2023). [51] World Meteorological Organization, July 2023 is set to be the hottest month on record, World Meteorol. Organ. (2023). [52] P.Gabrielli, L.Rosa, M.Gazzani, R.Meys, A.Bardow, M.Mazzotti, G.Sansavini, Net-zero emissions chemical industry in a world of limited resources, One Earth. 6 (2023) 682–704. [53] Accenture, NexantECA, The chemical industry’s road to net zero, (2022). [54] UNEP, Stockholm Convention on persistent organic pollutants (POPS) - Texts and Annexes, Secr. Stock. Conv. (2019). [55] UNEP, Initial indicative list of perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds, UNEP/POPS/POPRC.15/INF/9. (2019). [56] UNEP, POPRC-14 / 1 : Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds, (2018). [57] UNEP, Proposal to list long-chain perfluorocarboxylic acids, their salts and related compounds in Annexes A, B and/or C to the Stockholm Convention on Persistent Organic Pollutants, (2021). [58] UNEP, Global Chemicals Outlook II: From Legacies to Innovative Solutions, 2019. [59] SAICM, Paper by the Co-Chairs of the intersessional process on the Strategic Approach to International Chemicals Management and the sound management of chemicals and waste beyond 2020, Saicm/Oewg.3/4 2. (2019). [60] SAICM, Ip co-chairs single consolidated document, (2023). [61] SAICM, Proposed CRP on measurability, (2023). [62] EU, PAFS on the EU chemical strategy for sustainability towards a toxic-free environment, (2020). [63] EU, The Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC) No 1907/2006, Ec 2074/2005. 10 (2017) 1–21. [64] EU, Delegated Regulation 2023/707 amending CLP Regulation (EC) No 1272/2008, (2023) 7–39. [65] EU, Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs, 2388 (2022) 2020–2023. [66] EU, Directive (EU) 2020/2184 on quality of water intended for human consumption, 63 (2021). [67] USEPA, 100 percent Participation and Commitment in EPA’s PFOA Stewardship Program, USEPA. (2006). [68] USA, S.1790 - 116th Congress (2019-2020): National Defense Authorization Act for Fiscal Year 2020, (2019). [69] USEPA, EPA’s PFAS Strategic Roadmap: A Year of Progress, (2022). [70] United States Congress, Water pollution prevention and control: Title 33 — navigation and navigable waters programs, Title 33 — Navig. Navig. Waters Programs. (2018) 326–558. [71] USEPA, 2nd Draft Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous , Solid , Biosolids , and Tissue Samples by LC-MS / MS, (2022). [72] USEPA, 3rd Draft Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous , Solid , Biosolids , and Tissue Samples by LC-MS / MS, (2022). [73] J.Weiss, J.DeBoer, U.Berger, D.Muir, T.Ruan, A.Torre, F.Smedes, B.Vrana, F.Clavien, H.Fiedler, PFAS analysis in water for the Global Monitoring Plan of the Stockholm Convention: Set-up and guidelines for monitoring, UNEP Chem. Branch. (2015) 1–26. [74] UNEP, Second global monitoring report: Global monitoring plan for persistent organic pollutants, Unep/Pops/Cop.8/Inf/38. (2017). [75] Right Livelihood, The 2017 laureate of change-maker - Robert Bilott. https://rightlivelihood.org/the-change-makers/find-a-laureate/robert-bilott/ [76] USEPA, EPA and 3M ANNOUNCE PHASE OUT OF PFOS. https://www.epa.gov/archive/epapages/newsroom_archive/newsreleases/33aa946e6cb11f35852568e1005246b4.html [77] SAICM, Perfluorinated Chemicals. https://saicmknowledge.org/epi/perfluorinated-chemicals [78] ECHA, Restriction on the manufacture, placing on the market and use of PFASs. https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18663449b [79] ECHA, Restricting the use of per- and polyfluoroalkyl substances (PFASs) in fire-fighting foams. https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18663449b [80] ITRC, 2.2 Chemistry, Terminology, and Acronyms. https://pfas-1.itrcweb.org/2-2-chemistry-terminology-and-acronyms/ [81] C8 Science Panel, Background Information on Settlement and Science Panel. http://www.c8sciencepanel.org/panel.html [82] ITRC, 4 Physical and Chemical Properties. https://pfas-1.itrcweb.org/4-physical-and-chemical-properties/ [83] 3M, The Facts on PFAS. https://www.pfasfacts.com/ [84] C8 Science Panel, C8 Probable Link Reports. http://www.c8sciencepanel.org/prob_link.html [85] Ballotpedia, Christmas tree bill. https://ballotpedia.org/Christmas_tree_bill [86] USEPA, EPA Organization Chart. https://www.epa.gov/aboutepa/epa-organization-chart [87] USEPA, NPDES Permit Basics. https://www.epa.gov/npdes/npdes-permit-basics [88] USEPA, Filing a Pre-manufacture Notice with EPA. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/filing-pre-manufacture-notice-epa [89] USEPA, What is the Toxics Release Inventory? https://www.epa.gov/toxics-release-inventory-tri-program/what-toxics-release-inventory [90] USEPA, Summary of the Clean Air Act, USEPA. https://www.epa.gov/laws-regulations/summary-clean-air-act [91] USEPA, Effluent Guidelines. https://www.epa.gov/eg [92] USEPA, Low Volume Exemption for New Chemical Review under TSCA. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/low-volume-exemption-new-chemical [93] USEPA, Filing a Significant New Use Notice (SNUN) under TSCA. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/filing-significant-new-use-notice#:~:text=This%20notification%20provides%20EPA%20the,evaluating%20a%20significant%20new%20use. [94] USFDA, Authorized Uses of PFAS in Food Contact Applications. https://www.fda.gov/food/process-contaminants-food/authorized-uses-pfas-food-contact-applications [95] WHO, PFOS and PFOA in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality. https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/chemical-hazards-in-drinking-water/per-and-polyfluoroalkyl-substances [96] OECD, Overview of risk reduction approaches in Australia. https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/countryinformation/australia.htm#:~:text=Overview%20of%20risk%20reduction%20approaches,are%20not%20manufactured%20in%20Australia. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88778 | - |
dc.description.abstract | 全氟與多氟烷基物質 (Per- and Polyfluoroalkyl Substances, PFAS) 為一族種類繁多的人造化學品,從 20 世紀初被合成以來,被作為防污、防油及界面活性劑,廣泛應用在用在工業與商業之中。直到 2000 年,美國主要的 PFAS 製造商 3M 公司 (Minnesota Mining and Manufacturing Company) 與美國環境保護署 (United States Environmental Protection Agency, USEPA) 達成協議,承諾將淘汰全氟辛烷磺酸 (Perfluorooctanesulfonic acid, PFOS) 的製造和使用。以 3M 的自我管制 (Self-regulatory) 聲明為契機,國際對 PFAS 的污染問題日趨重視,斯德哥爾摩公約於 2009 年將 PFOS、其鹽類及全氟辛烷磺醯氟 (Perfluorooctane sulfonyl fluoride, PFOSF) 納入附件 B 列管,UNEP 成立的國際化學物質管理策略方針 (The Strategic Approach to International Chemical management, SAICM) 亦隨後將 PFAS 列為新興政策議題 (Emerging Policy Issue, EPI),建議各國應優先採取行動應對 PFAS 的污染問題。
SAICM 最初成立的宗旨,係為健全管理化學品的整個生命週期,在 2020 年以前,最大程度地減少化學品的使用和生產對人類健康與環境之重大不良影響。遺憾的是,於 2019 年發表全球化學品展望第二版 (Global Chemicals Outlook II, GCO II) 報告指出,各國無法如期實現 2020 年以前將化學品與廢棄物的不良影響最大程度地減少之目標,於是 SACIM 在同年制定 2020 年以後的化學品與廢棄物之健全管理策略。為持續解決 EPI,UNEP 於 2020 年發布關注議題的評估報告,認為在 PFAS 的管理上,應加速淘汰斯德哥爾摩公約所規範的 PFAS;定期評估管理方法和現況,以達到淘汰長鏈 PFAS 之目的;以及促進定期之訊息交流,對未列入斯德哥爾摩公約的 PFAS 加速採取行動,以期過渡至更安全的替代品。 歐盟於 2019 年底提出綠色新政 (European Green Deal),最終目標是在 2050 年以前達到氣候中和 (Climate neutral),為促成計畫,並於無毒環境 (Toxic-free environment) 的願景下推動化學品永續發展策略 (Chemicals strategy for sustainability, CSS),該策略將 PFAS 作為優先關注的化學品,以此展開各種行動,例如於 2022 年提議修訂化學物質和混合物分類、標示與包裝 (Classification, labelling and packaging of chemicals, CLP) 規章,並預告下一步的行動將會修訂化學品註冊、評估、許可和限制 (Registration, Evaluation, Authorization and Restriction of Chemicals, REACH) 法規,顯示歐盟以更系統化的方式管理 PFAS 之企圖心。 美國為應對 PFAS 污染最具經驗的國家之一,USEPA 於 2021 年發布之 PFAS 策略路線圖:環保署自 2021 年至 2024 年的行動承諾 (PFAS Strategic Roadmap: EPA's Commitments to Action 2021—2024),以研究、嚴格及整治作為中心指引,輔以 PFAS 的生命週期管理、源頭管理、追究污染責任、彌補技術與資訊缺口,以及保護弱勢族群等五大原則,執行為期三年的 PFAS 管理策略。 我國缺乏足夠的天然資源,仰賴貿易出口賺取貿易順差,因此必須時刻注意國際化學品管理的法規趨勢,加之積體電路 (Integrated Circuit, IC) 為我國出口貿易額比重最大的貨品類別,半導體製程迄今仍缺乏非氟化替代品,故此我國有必要關注國際的 PFAS 管理策略趨勢。本研究將使用文獻整理的方式,回顧 PFAS 的定義、分類、物化性質、暴露及對人類健康的危害,再來蒐集並整理聯合國、歐盟及美國 2020 年以後對 PFAS 的管理策略趨勢,接著分析聯合國、歐盟及美國管理 PFAS 所面臨的挑戰,在取其精華,去其糟粕之後,參考 SAICM beyond 2020 制定的化學品與廢棄物管理的策略目標,提出我國 PFAS 管理策略的初步建議。 | zh_TW |
dc.description.abstract | Per- and Polyfluoroalkyl Substances (PFAS), as a diverse family of synthetic chemicals, have been widely used in industries and commercial applications since their synthesis in the early 20th century for their anti-stain, anti-oil, and persistent properties. In 2000, the major PFAS manufacturer, Minnesota Mining and Manufacturing Company (3M Company), reached an agreement with the United States Environmental Protection Agency (USEPA) to phase out the production and use of perfluorooctanesulfonic acid (PFOS). This agreement, along with 3M's self-regulatory statement, led to increased global attention to PFAS pollution. In 2009, PFOS, its salts, and perfluorooctane sulfonyl fluoride (PFOSF) were listed under Annex B of the Stockholm Convention. The Strategic Approach to International Chemical Management (SAICM), established by the United Nations Environment Programme (UNEP), subsequently categorized PFAS as an Emerging Policy Issue (EPI) and recommended countries to prioritize actions to address PFAS contamination.
The initial purpose of SAICM was to ensure sound management of chemicals throughout their life cycle and minimize the significant adverse effects of chemicals on human health and the environment by 2020. However, the Global Chemicals Outlook II (GCO II) report published in 2019 indicated that countries were unable to achieve the goal of minimizing the adverse impacts of chemicals and waste by 2020. Therefore, SACIM developed a sound management strategy for chemicals and waste after 2020. In 2020, UNEP released an assessment report on PFAS as a focus issue, suggesting the accelerated phase-out of PFAS regulated by the Stockholm Convention, regular evaluation of management methods and status, and promotion of regular information exchange to expedite action on PFAS not covered by the convention, with the aim of transitioning to safer alternatives. In late 2019, the European Union (EU) introduced the European Green Deal, with the ultimate goal of achieving climate neutrality by 2050 and promoting a toxic-free environment. As part of this vision, the EU initiated the Chemicals Strategy for Sustainability (CSS) and identified PFAS as a priority chemical. Various actions have been taken, such as proposing revisions to the Classification, Labelling, and Packaging of Chemicals (CLP) regulation in 2022 and announcing future steps to revise the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. These initiatives demonstrate the EU's systematic approach to managing PFAS. As one of the countries with extensive experience in addressing PFAS contamination, USEPA released the PFAS Strategic Roadmap: EPA's Commitments to Action 2021—2024 in 2021. The PFAS strategic roadmap focuses on research, restrict, and remediate, supported by five principles: Consider the lifecycle of pfas, get upstream of the problem, hold polluters accountable, ensure science-based decision-making and prioritize protection of disadvantaged communities. Due to a lack of natural resources and reliance on trade exports to generate trade surpluses, Taiwan must constantly pay attention to the regulatory trends in international chemical management. Additionally, since integrated circuits (ICs) are the largest category of goods in terms of export trade, and the semiconductor process still lacks non-fluorinated alternatives, it is necessary for Taiwan to be aware of international trends in PFAS management strategies. This study will review the definition, classification, physicochemical properties, exposure, and health hazards of PFAS through literature review. It will then gather and organize the management strategy trends of the United Nations, the European Union, and the United States regarding PFAS after 2020. By analyzing the challenges faced by the research subjects and learning experience form them, this study will provide preliminary suggestions for Taiwan’s PFAS management strategy, taking into consideration the goals set forth in SAICM beyond 2020. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:44:55Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:44:55Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 圖目錄 ix 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究範圍與目的 5 第二章 PFAS 的文獻回顧 7 2.1 PFAS 的定義與分類 7 2.2 PFAS 的物理與化學性質 11 2.3 PFAS 的用途與暴露 11 2.4 PFAS 對人類健康的影響 14 2.5 PFAS 的管理策略與淨零排放之關聯性 15 第三章 聯合國的 PFAS 管理策略趨勢 18 3.1 斯德哥爾摩公約 18 3.2 關注議題的評估報告 20 3.3 SAICM beyond 2020 22 第四章 歐盟的 PFAS 管理策略趨勢 26 4.1 綠色新政 26 4.2 提案修訂 CLP 規章 27 4.3 提案限制在消防泡沫中使用任何 PFAS 29 4.4 提案限制在消防泡沫以外的所有用途中使用任何 PFAS 30 4.5 在食品中污染物質之最大限量中增修 PFAS 標準 31 4.6 在飲用水指令中增修 PFAS 標準 32 第五章 美國的 PFAS 管理策略趨勢 33 5.1 2020 財政年度國防授權法 33 5.2 PFAS 策略路線圖 35 第六章 結果與討論 52 6.1 綜合比較聯合國、歐盟及美國對 PFAS 的管理作為 52 6.2 綜合比較聯合國、歐盟及美國在 PFAS 的管理策略與執行所面臨之挑戰 53 6.3 初步建議我國的 PFAS 管理策略 56 第七章 結論與建議 60 7.1 結論 60 7.2 建議 62 參考文獻-中文部分 64 參考文獻-外文部分 65 | - |
dc.language.iso | zh_TW | - |
dc.title | 當前聯合國、歐盟及美國對全氟與多氟烷基物質之管理策略與執行 | zh_TW |
dc.title | Current Management Strategies/Practices for Per- and Polyfluoroalkyl Substances - the United Nations, the European Union, and the United States | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭繼汾;李育輯 | zh_TW |
dc.contributor.oralexamcommittee | Chi-Fen Kuo;Yu-Chi Li | en |
dc.subject.keyword | 全氟與多氟烷基物質,化學品管理,國際化學物質管理策略方針,持久性有機污染物,斯德哥爾摩公約, | zh_TW |
dc.subject.keyword | Per- and Polyfluoroalkyl Substances,Chemical Management,Strategic Approach to International Chemical Management,Persistent Organic Pollutants,Stockholm Convention, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU202302886 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。