Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88776
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘國隆zh_TW
dc.contributor.advisorKuo-Long Panen
dc.contributor.author吳奇龍zh_TW
dc.contributor.authorChi-Lung Wuen
dc.date.accessioned2023-08-15T17:44:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationFilliben, J.D., Electric Thruster Systems. 1997.
Sutton, G.P. and O. Biblarz, Rocket propulsion elements / George P. Sutton, Oscar Biblarz. 7th ed. 2001, New York: John Wiley & Sons.
Wilbur, P.J., V.K. Rawlin, and J. Beattie, Ion thruster development trends and status in the United States. Journal of Propulsion and Power, 1998. 14(5): p. 708-715.
Polk, J.E., et al., A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Transactions on Plasma Science, 2008. 36(5): p. 2167-2179.
Weiss, N., Dynamos in planets, stars and galaxies. Astronomy & Geophysics, 2002. 43(3): p. 3.9-3.14.
Engelberger, J., Space propulsion by magnetic-field interaction. Journal of Spacecraft and Rockets, 1964. 1(3): p. 347-349.
Jackson, J.D., Classical electrodynamics. 1999, American Association of Physics Teachers.
Parker, E.N., Cosmical magnetic fields: Their origin and their activity. 2019: Oxford university press.
Pulatov, V., Magnetic propulsion systems. Progress in Aerospace Sciences, 2001. 37(3): p. 245-261.
Dadhich, A. and G. Schaffner. Electromagnetic propulsion system for spacecrafts using geomagnetic fields and superconductors. in 54th AIAA Aerospace Sciences Meeting. 2016.
ZHONG, Y., Y.-W. GUAN, J.-Q. SHI, and F. XIAO, The calculation method of full tensor geomagnetic gradient based on IGRF model. Geophysical and Geochemical Exploration, 2020(3): p. 582-590.
Alken, P., et al., International Geomagnetic Reference Field: the thirteenth generation. Earth, Planets and Space, 2021. 73(1): p. 49.
Kuo, H.-W., K.-L. Pan, and W.-L. Lee, A propellant-free superconducting solenoid thruster driven by geomagnetic field. Journal of Advanced Research, 2021. 28: p. 269-275.
Nilsson, J.W. and S.A. Riedel, Electric circuits. 2020: Pearson Education Limited.
Brateng, E. Measuring a Capacitor. 2019; Available from: https://forum.digikey.com/t/measuring-a-capacitor/4265.
Technologies, K., E4990A Impedance Analyzer datasheet. 2018-2022, Keysight Technologies. p. 13.
Wang, B., et al., Target thrust measurement for applied-field magnetoplasmadynamic thruster. Measurement Science and Technology, 2018. 29(7): p. 075302.
Nagao, N., S. Yokota, K. Komurasaki, and Y. Arakawa, Development of a two-dimensional dual pendulum thrust stand for Hall thrusters. Review of Scientific Instruments, 2007. 78(11).
Haag, T. PPT thrust stand. in 31st Joint Propulsion Conference and Exhibit. 1995.
Lun, J. and C. Law, Direct thrust measurement stand with improved operation and force calibration technique for performance testing of pulsed micro-thrusters. Measurement Science and Technology, 2014. 25(9): p. 095009.
Ketsdever, A.D., B.C. D'Souza, and R.H. Lee, Thrust stand micromass balance for the direct measurement of specific impulse. Journal of Propulsion and Power, 2008. 24(6): p. 1376-1381.
Takahashi, K., et al., Direct thrust measurement of a permanent magnet helicon double layer thruster. Applied Physics Letters, 2011. 98(14).
("KEYENCE"), K.I.B.N.S., Keyence Ultra High-Speed/High-Accuracy Laser Displacement Sensor LK-G5000 Series datasheet. 2016. p. 1-8.
Clarke, J. and A.I. Braginski, The SQUID handbook. Vol. 1. 2004: Wiley Online Library.
Kuo, H.-W., Research and development of a low energy consumption propellant-free superconducting solenoid thruster driven by geomagnetic field. 2018.
Christopher, B., Validating the Use of Boundary Elements for Magnetostatics Modeling. 2018.
Jia, K. and T. Lu, Numerical study on the electromechanical behavior of dielectric elastomer with the influence of surrounding medium. International Journal of Smart and Nano Materials, 2016. 7(1): p. 52-68.
Google, Google Maps. (n.d.). [Longyearbyen, Svalbard and Jan Mayen]. Retrieved August 1st , 2023, from https://goo.gl/maps/xi49qPwp5F5hCBSYA.
Ostergaard, D.F., Magnetics for static fields. 1987: Swanson Analysis Systems.
Manual, A.U.s., Swanson analysis systems. Inc., Volumes I, II, III, IV, Revision, 1994. 5(0).
Shuddemagen, C.L.B., The demagnetizing factors for cylindrical iron rods. 1907.
Lerner, L., Magnetic field of a finite solenoid with a linear permeable core. American Journal of Physics, 2011. 79(10): p. 1030-1035.
Zhao, J., et al., Temperature and frequency dependence of electrical iron effects on electromagnetic characteristics of high-speed solenoid valve for common rail injector. International Journal of Applied Electromagnetics and Mechanics, 2019. 60(2): p. 173-185.
Lu, K., et al., Simultaneous improvements of effective magnetic permeability, core losses and temperature characteristics of Fe-Si soft magnetic composites induced by annealing treatment. Journal of Alloys and Compounds, 2022. 892: p. 162100.
Wu, S., et al., Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2012. 324(5): p. 818-822.
Shokrollahi, H. and K. Janghorban, Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2007. 317(1-2): p. 61-67.
Prozorov, R. and V.G. Kogan, Effective demagnetizing factors of diamagnetic samples of various shapes. Physical review applied, 2018. 10(1): p. 014030.
Derby, N. and S. Olbert, Cylindrical magnets and ideal solenoids. American Journal of Physics, 2010. 78(3): p. 229-235.
Piragino, A., et al. Characterization of a 20 kW-class hall effect thruster. in Proceedings of the 35th International Electric Propulsion Conference. 2017.
Holste, K., et al., Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments, 2020. 91(6).
Wardinski, I., et al., Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13). Earth, Planets and Space, 2020. 72(1): p. 1-22.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88776-
dc.description.abstract本篇研究建立在前人對於具有截面積梯度變化之線圈在地磁場中受力的理論框架上,驗證了微小尺寸推進器的有效性及磁矩梯度對受力提升的效果。然而,我們相信在更大尺度、增加電流強度,以及調整尺寸或梯度斜率等條件下,推進器的潛力將得到更大程度的發揮。
為了進一步驗證和拓展理論對受力大小的預測,我們運用商用模擬軟體Comsol-Multiphysics來模擬不同尺度下的實驗結果。透過這些模擬和實驗,我們成功驗證了線圈在地磁場中受力的理論並拓展了其受力大小的預測。
在實驗中,我們採用了具有更大截面積梯度變化的圓錐外型並調整更大的幾何尺寸和參數設置,這使我們成功地測量到了毫米牛頓等級的推力。然而,我們也針對鐵芯線圈於地磁場中受力的理論進行了修正。結果顯示,儘管圓錐具有較大的截面積梯度變化,但由於鐵芯材料與背景磁場的相互影響,推力將會降低。這種現象是因為鐵芯的幾何外型在磁場中呈現出更不均勻的分佈。儘管該理論修正在圓台的推力預測上存在較大的誤差,然而透過此修正因子,有助於未來更準確地考量材料和幾何特性,進而更準確地預測推力大小。
本篇研究的成果有助於深入瞭解推進器的性能及圓錐形狀對推力的影響。透過實驗和模擬的結果,我們成功拓展了推進器的潛力和應用範圍,並為未來的推進技術發展提供了有價值的參考。此外,無需推進劑的基於地磁場的超導螺線管推進器具有可持續性、資源節約、輕量、體積小、穩定推力及環境友好等優勢,為太空任務提供了高效、靈活和可持續的推進解決方案,推動外太空的探索和利用。
zh_TW
dc.description.abstractThis study is based on the theoretical framework of the previous research on the force experienced by coils with cross-sectional area gradient variations in the geomagnetic field. It verifies small-sized thrusters' effectiveness and force enhancement due to magnetic moment gradients. However, the potential of the thruster will be further enhanced at larger scales, increased current intensity, and adjustments in size or gradient slope.
To further validate and extend the theoretical predictions of force magnitude, we employed the commercial simulation software Comsol-Multiphysics to simulate experimental results at different scales. These simulations and experiments successfully validated the theoretical predictions of coil forces in the geomagnetic field and expanded their predicted force magnitudes.
In the experiments, we used a cone-shaped geometry with more significant cross-sectional area gradient variations and adjusted the geometric size and parameters, enabling us to measure millinewton-level thrust. However, we also corrected the theoretical force predictions on the iron core coil in the geomagnetic field. The results showed that despite the cone's more considerable cross-sectional area gradient variations, it would reduce the force due to the mutual influence between the iron core material and the background magnetic field. This phenomenon arises from the non-uniform distribution of the iron core's geometry in the magnetic field. Although the theoretical corrections show more significant errors in force prediction for the frustum shape, incorporating this correction factor will aid in more accurately considering material properties and geometric characteristics for future force predictions.
The findings of this study contribute to a deeper understanding of the thruster's performance and the impact of the cone-shaped design on thrust. By analyzing experimental and simulation results, we successfully explore the potential and application range of the thruster, providing valuable references for future propulsion technology development. Furthermore, the magnetically propelled superconducting coil thruster based on the geomagnetic field offers advantages such as sustainability, resource efficiency, lightweight, compact size, stable thrust, and environmental friendliness. This solution presents an efficient, flexible, and sustainable propulsion alternative for space missions, promoting exploration and utilization of outer space.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:44:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:44:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 非均勻磁場與線圈磁矩的交互作用 2
1.2.2 均勻磁場與漸變式截面積線圈磁矩的交互作用 5
1.3 研究動機與目的 9
第二章 研究方法 11
2.1 電磁學理論推導與線圈受力分析 11
2.1.1 磁場與磁偶極之交互作用力 13
2.2 受力量測之實驗設備與方法 16
2.2.1 毫米尺度實驗設備與方法 17
2.2.2 平行板電容力感測器 19
2.2.3 電容量測儀器與方法 21
2.2.4 電容力感測器校準方法 25
2.2.5 釐米尺度實驗設備與方法 28
2.2.5 目標板受力理論 31
2.2.6 雷射位移計之校準 32
2.2.7 資料擷取系統 35
2.3 地磁量測之實驗設備與方法 35
2.4 超導量子干涉磁量儀 39
2.5 數值模擬方法 41
2.5.1 毫米尺度線圈幾何設定 42
2.5.2 釐米尺度線圈幾何設定 46
2.5.3 背景磁場與邊界條件設定 47
2.5.4 線圈電流輸入設定 49
2.5.5 線圈受力計算方法 51
2.5.6 網格建立收斂性 53
2.6 極地實驗架設與方法 57
第三章 毫米尺度線圈驗證 60
3.1 非均勻磁場模擬驗證 60
3.2 均勻磁場模擬驗證 63
3.3 兩平行長直導線 65
3.4 電磁引動器 (Solenoid actuator) 67
3.5 均勻背景場中鋁芯線圈磁場分析 70
3.6 鐵芯線圈磁場分析 72
3.7 均勻磁場實驗驗證 75
3.8 圓錐尖點於模擬影響 77
第四章 結果與討論 78
4.1 鐵芯相對磁導率之結果 78
4.2 有限長度鐵芯電磁鐵磁場近似解 82
4.3 受力理論修正 85
4.4 毫米尺寸線圈實驗結果 87
4.4.1 毫米尺寸實驗、模擬與理論比較 90
4.4.2 比較不同截面積變化梯度之線圈受力 92
4.5 釐米尺寸線圈實驗結果 95
4.5.1 釐米尺寸實驗、模擬與理論比較 98
4.5.2 比較不同截面積變化梯度之線圈受力 100
4.6 線圈推進器與現行推進器之比較 101
4.7 極地實驗結果 102
第五章 結論 105
5.1 結論 105
5.2 未來展望 107
參考文獻 108
-
dc.language.isozh_TW-
dc.subject圓錐形電磁鐵zh_TW
dc.subjectComsol-Multiphysicszh_TW
dc.subject推進器zh_TW
dc.subject地磁zh_TW
dc.subject無燃料zh_TW
dc.subjectgeomagneticen
dc.subjectcone-shaped electromagneten
dc.subjectthrusteren
dc.subjectnon-propellanten
dc.subjectComsol-Multiphysicsen
dc.title論圓錐幾何設計及尺度擴展對螺線管推進器效能之影響zh_TW
dc.titleInvestigating the Effects of Cone-shaped Geometry Design and Scaling Up on the Performance of Solenoid Thrustersen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張顏暉;陳瑞琳;劉建豪zh_TW
dc.contributor.oralexamcommitteeYuan-Huei Chang;Ruey-Lin Chern;Chien-Hao Liuen
dc.subject.keyword地磁,圓錐形電磁鐵,推進器,Comsol-Multiphysics,無燃料,zh_TW
dc.subject.keywordgeomagnetic,cone-shaped electromagnet,thruster,Comsol-Multiphysics,non-propellant,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202302690-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved