請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88768完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德 | zh_TW |
| dc.contributor.advisor | Char-Dir Chung | en |
| dc.contributor.author | 呂世豪 | zh_TW |
| dc.contributor.author | Shih-Hao Lu | en |
| dc.date.accessioned | 2023-08-15T17:42:29Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] LTE: Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation, 3GPP TS 36.211 V12.3.0, Sophia Antipolis Cedex, France, Oct. 2014.
[2] 5G NR: Physical Channels and Modulation, 3GPP TS 38.211 V15.4, Sophia Antipolis Cedex, France, Dec. 2018. [3] Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, IEEE Standard 802.22-2011, Jul. 2011. [4] H. Minn, V. K. Bhargava, and K. K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822-839, Jul. 2003. [5] K. S. Kim, S. W. Kim, Y. S. Cho, and J. Y. Ahn, “Synchronization and cell-search technique using preamble for OFDM cellular systems,” IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3469-3485, Nov. 2007. [6] M. M. Gul, X. Ma, and S. Lee, “Timing and frequency synchronization for OFDM downlink transmissions using Zadoff-Chu sequences,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1716-1729, Mar. 2015. [7] S. Johnson and O. A. Dobre, “Time and carrier frequency synchronization for coherent optical communication: Implementation considerations, measurements, and analysis,” IEEE Trans. Instrum. Meas., vol. 69, no. 8, pp. 5810-5820, Aug. 2020. [8] C.-D. Chung and W.-C. Chen, “Preamble sequence design for spectral compactness and initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018. [9] C.-D. Chung, W.-C. Chen, and C.-K. Yang, “Constant-amplitude sequences for spectrally compact OFDM training waveforms,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12974-12991, Nov. 2020. [10] W.-C. Chen and C.-D. Chung, “Spectrally efficient OFDM pilot waveform for channel estimation,” IEEE Trans. Commun., vol. 65, no. 1, pp. 387-402, Jan. 2017. [11] W.-C. Chen, C.-K. Yang, P.-T. Chi, and C.-D. Chung, “Pilot sequence design for spectral compactness and channel estimation in OFDM,” in Proc. IEEE Veh. Technol. Conf., Honolulu, track 7A, pp. 1-5, Sep. 2019. [12] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consumer Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998. [13] P. Stoica and O. Besson, “Training sequence design for frequency offset and frequency-selective channel estimation,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1910-1917, Nov. 2003. [14] S. Yu and J.-W. Lee, “Channel sounding for multi-user massive MIMO in distributed antenna system environment,” Electronics, vol. 8, no. 1, pp. 1-14, Jan. 2019. [15] L. Kundu, G. Xiong, and J. Cho, “Physical uplink control channel design for 5G new radio,” in Proc. IEEE 5G World Forum (5GWF), Silicon Valley, pp. 233-238, Nov. 2018. [16] J. Y. Han, O. Jo, and J. Kim, “Exploitation of channel-learning for enhancing 5G blind beam index detection,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2925-2938, Mar. 2022. [17] T. Kim, I. Bang, and D.-K. Sung, “An enhanced PRACH preamble detector for cellular IOT communications,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2678-2681, Dec. 2017. [18] L. Zhen et al., “Random access preamble design and detection for mobile satellite communication systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 2, pp. 280-291, Feb. 2018. [19] B. Liang, Z. He, K. Niu, B. Tian, and S. Sun, “The research on random access signal detection algorithm in LTE systems,” in Proc. IEEE Int. Symp. Microwave, Antenna, Propag. and EMC Technol. for Wireless Commun., Chengdu, China, pp. 115-118, Dec. 2013. [20] A.-E. Mostafa, et al., “Aggregate preamble sequence design and detection for massive IOT with deep learning,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3800-3816, Apr. 2021. [21] L. Zhen, H. Kong, Y. Zhang, W. Wang, and K. Yu, “Efficient collision detection based on Zadoff-Chu sequences for satellite-enabled M2M random access,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, pp. 1-6, Aug. 2021. [22] S. Ali, Z. Chen, and F. Yin, “Design of orthogonal uplink pilot sequences for TDD massive MIMO under pilot contamination,” J. Commun., vol. 12, no. 1, pp. 40-48, Jan. 2017. [23] L. G. Giordano et al., “Uplink sounding reference signal coordination to combat pilot contamination in 5G massive MIMO,” in Proc. IEEE Wireless Commun. Netw. Conf., Barcelona, Spain, pp. 1-6, Apr. 2018. [24] F. Yang, P. Cai, H. Qian, and X. Luo, “Pilot contamination in massive MIMO induced by timing and frequency errors,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4477-4492, Jul. 2018. [25] T. S. Rappaport, Wireless Communications, Upper Saddle River, NJ: Prentice Hall, 2001. [26] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. 18, pp. 531-532, Jul. 1972. [27] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, pp. 1406-1409, Jul. 1992. [28] J. J. Benedetto and J. J. Donatelli, “Ambiguity function and frametheoretic properties of periodic zero-autocorrelation waveforms,” IEEE J. Select. Topics Signal Process., vol. 1, no. 1, pp. 6-20, Jun. 2007. [29] R.-A. Pitaval, B. M. Popovic, P. Wang, and F. Berggren, “Overcoming ´ 5G PRACH capacity shortfall: Supersets of Zadoff–Chu sequences with low-correlation zone,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5673- 5688, Sep. 2020. [30] M. Faulkner, “The effect of filtering on the performance of OFDM systems,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1877-1884, Sep. 2000. [31] C.-D. Chung, “Spectrally precoded OFDM,” IEEE Trans. Commun., vol. 54, no. 12, pp. 2173-2185, Dec. 2006. [32] H.-M. Chen, W.-C. Chen, and C.-D. Chung, “Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1416-1427, May 2011. [33] M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun., vol. 59, no. 3, pp. 844-853, Mar. 2011. [34] C.-D. Chung and K.-W. Chen, “Spectrally precoded OFDM without guard insertion,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 107-121, Jan. 2017. [35] K. Hussain and R. Lopez-Valcarce, “Joint precoder and window design for OFDM sidelobe suppression,” IEEE Commun. Lett., vol. 26, no. 12, pp. 3044-3048, Dec. 2022. [36] G. E. Andrews, The Theory of Partitions. Cambridge: Cambridge University Press, 1998. [37] N. M. Chase, “Global structure of integer partitions sequences,” Electron. J. Comb., vol. 1, pp. 1 25, Apr. 2004. [38] D. E. Knuth, The Art of Computer Programming, vol. 4. Upper Saddle River, NJ, USA: Addison-Wesley, 2005. [39] A. M. Foggia, “Massively parallel approaches to frustrated quantum magnets,” Master in High Performance Computing, vol. 4, pp. 1-46, Jan. 2019. [40] I. Pinelis, “Cyclic polygons with given edge lengths: Existence and uniqueness,” J. Geom., vol. 82, no. 1-2, pp. 156-171, Aug. 2005. [41] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [42] “NR; Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP, Sophia Antipolis Cedex, France, TS 38.901 V16.1, Nov. 2020. [43] P.-F. Tsou (2021), Orthogonal Constant-Amplitude Sequence Families for Spectrally Compact OFDM Training Waveforms (Unpublished master’s dissertation). National Taiwan University, Taipei, Taiwan. [44] Y. Wang, A. Zheng, J. Zhang, and D. Yang, “A novel channel estimation algorithm for sounding reference signal in LTE uplink transmission,” IEEE International Conf. on Commun. Tech. and Applications, Beijing, China, pp. 412-415, Dec. 2009. [45] P. Xu, J. Wang, J. Wang, and F. Qi, “Analysis and design of channel estimation in multicell multiuser MIMO OFDM systems, ” IEEE Trans. Veh. Tech., vol. 64, no. 2, pp. 610-620, Feb. 2015. [46] B. M. Popović, P. Wang, and F. Berggren, “Signals with sparse mutual interference for sounding massive MIMO channels,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5608-5619, Aug. 2021. [47] H.-S. Kim, S.-H. Lee, and Y.-H. Lee, “Channel sounding for multi-sector cooperation in OFDM-based wireless cellular systems,” International Conf. on Advanced Commun. Tech., Gangwon, Korea (South), pp. 313-317, Apr. 2010. [48] A. Kalachikov and A. Stenin, “Performance evaluation of the SRS based MIMO channel estimation on 5G NR open source channel model,” in Proc. IEEE International Conf. of Young Professionals in Electron Devices and Materials, Souzga, the Altai Republic, Russia, pp. 124-127, Aug. 2021. [49] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88768 | - |
| dc.description.abstract | 在矩形脈衝正交分頻多工系統中,恆定振幅序列對於構建前導/領航波形以促進系統參數識別非常有用。在各種系統參數識別應用中,如隨機接入通道識別和多輸入多輸出系統中的上行通道探測,通常優先採用正交恆定振幅序列。然而,在現行的無線通訊標準中採用的傳統正交恆定振幅序列(例如Zadoff-Chu序列)數量不足。這種不足會導致需要大量識別序列的系統參數識別性能嚴重降低。此外,攜帶傳統恆定振幅序列的矩形脈衝正交分頻多工前導/領航波形會受到大的旁帶頻譜功率影響,因此具有較低的頻譜緊密度。因此,本文旨在開發幾個I階恆定振幅序列集,其中包含更多正交恆定振幅序列,同時賦予相應的正交分頻多工前導/領航波形高頻譜緊密度。由於提供了更多正交序列,所開發的I階恆定振幅序列集可以增強在呈現短延遲的多路徑通道上之系統參數識別性能特性,同時構成頻譜緊密的正交分頻多工前導/領航波形。 | zh_TW |
| dc.description.abstract | In rectangularly-pulsed orthogonal frequency division multiplexing (OFDM) systems, constant-amplitude (CA) sequences are desirable to construct preamble/pilot waveforms to facilitate system parameter identification (SPI). Orthogonal CA sequences are generally preferred in various SPI applications like random-access channel identification and uplink channel sounding in multiple-input multiple-output systems. However, the number of conventional orthogonal CA sequences (e.g., Zadoff-Chu sequences) that can be adopted in popular wireless communication standards is insufficient. Such insufficiency causes heavy performance degradation for SPI requiring a large number of identification sequences. Moreover, rectangularly-pulsed OFDM preamble/pilot waveforms carrying conventional CA sequences suffer from large power spectral sidelobes and thus exhibit low spectral compactness. This paper is thus motivated to develop several order-I CA sequence families which contain more orthogonal CA sequences while endowing the corresponding OFDM preamble/pilot waveforms with fast-decaying spectral sidelobes. Since more orthogonal sequences are provided, the developed order-I CA sequence families can enhance the performance characteristics in SPI over multipath channels exhibiting short-delay channel profiles, while composing spectrally compact OFDM preamble/pilot waveforms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:42:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:42:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents iv List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Conventional CA Sequences 3 1.2 Order-I CA Sequences 5 1.3 Contribution 7 1.4 Organization 9 1.5 Notations 9 Chapter 2 Review of Order-I Constant-Amplitude Sequences 11 2.1 Signal Model 11 2.2 Sequence G_I 13 2.3 Sequence I_I 15 2.4 Sequence G ̂_I and I ̂_I 16 Chapter 3 Families G_(max,I ̃)^((dpma,κ)) and G ̃_(max,I )^((dpma,κ)) 26 3.1 Review of Proper Level-(Ω(N)-1) Factorization for Ω(N)>2. 28 3.2 Review of Proper Level-(Ω(N)-2) Factorization for Ω(N)>3 29 3.3 Exclusively Search a Proper Level-(Ω(N)-κ) Factorization. 31 3.4 Near-Proper Level-(Ω(N)-κ) Factorization for Ω(N)>4 and κ∈{3,4,…,Ω(N)-2} 32 3.5 Some Examples of Families G_(max,I ̃)^((dpma,κ) ) and G ̃_(max,I ̃)^((dpma,κ) ) 33 Chapter 4 Families G ̂_I^((pma)), G ̂_(max,I ̃)^((dpma,κ)), and G ̂_(max,I ̃)^((adpma,κ)) 39 4.1 Degenerate PMA Sequence Family G ̂_(max,I ̃)^((dpma,κ)) for κ∈Z_(Ω ̃(N)-1)^+ 39 4.2 Augmented PMA Sequence Families G ̂_I^((apma)) and G ̂_(max,I ̃)^((adpma,κ)) for κ∈Z_(Ω ̃(N)-1)^+ 40 4.2.1 Review of Procedure to Finding a Proper θ 41 4.3 Examples of Families G ̂_I^((apma)), G ̂_(max,I ̃)^((dpma,κ)), and G ̂_(max,I ̃)^((adpma,κ)) 43 Chapter 5 Random Access Channel Identification 45 5.1 Scenario for RA Channel Identification 45 5.2 Performance Analysis 46 5.3 Performance Results 49 Chapter 6 Simultaneous Channel Estimation 57 6.1 Scenario for Simultaneous Channel Estimation 57 6.1.1 SCE System 58 6.2 Performance Analysis 61 6.3 Performance Results 64 Chapter 7 Conclusion 70 Appendix 72 Reference 75 | - |
| dc.language.iso | en | - |
| dc.subject | 前導 | zh_TW |
| dc.subject | 頻譜緊密度 | zh_TW |
| dc.subject | 系統參數識別 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | 正交恆定振幅序列 | zh_TW |
| dc.subject | 領航 | zh_TW |
| dc.subject | pilot | en |
| dc.subject | system parameter identification | en |
| dc.subject | preamble | en |
| dc.subject | Orthogonal frequency division multiplexing | en |
| dc.subject | orthogonal constant-amplitude sequences | en |
| dc.subject | spectral compactness | en |
| dc.title | 用於高頻譜效益正交分頻多工系統中系統參數識別之正交恆定振幅序列集 | zh_TW |
| dc.title | Orthogonal Constant-Amplitude Sequence Families for System Parameter Identification in Spectrally Compact OFDM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳維昌 | zh_TW |
| dc.contributor.coadvisor | Wei-Chang Chen | en |
| dc.contributor.oralexamcommittee | 蘇育德;林茂昭;王晉良 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ted Su;Mao-Chao Lin;Chin-Liang Wang | en |
| dc.subject.keyword | 正交分頻多工,正交恆定振幅序列,領航,前導,系統參數識別,頻譜緊密度, | zh_TW |
| dc.subject.keyword | Orthogonal frequency division multiplexing,orthogonal constant-amplitude sequences,pilot,preamble,system parameter identification,spectral compactness, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202303160 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
