請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡 | zh_TW |
| dc.contributor.advisor | Ching-I Huang | en |
| dc.contributor.author | 張宇賢 | zh_TW |
| dc.contributor.author | Yu-Xian Zhang | en |
| dc.date.accessioned | 2023-08-15T17:42:14Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] Al-Turaif, H. A., Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings (2010) 69 (3), 241-246.
[2] Liu, S.; Gu, L.; Zhao, H.; Chen, J.; Yu, H., Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings. Journal of Materials Science & Technology (2016) 32 (5), 425-431. [3] Jin, F.-L.; Li, X.; Park, S.-J., Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry (2015) 29, 1-11. [4] Wazalwar, R.; Sahu, M.; Raichur, A. M., Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Adv (2021) 3 (10), 2741-2776. [5] Toldy, A.; Szolnoki, B.; Marosi, G., Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability (2011) 96 (3), 371-376. [6] Quelennec, B.; Delpouve, N.; Delbreilh, L.; Delannoy, R.; Richaud, E., Physical Aging of an Epoxy Resin for Civil Engineering Applications from Fast Scanning Calorimetry Investigations. Macromolecular Symposia (2022) 405 (1). [7] Krzywiński, K.; Sadowski, Ł.; Stefaniuk, D.; Obrosov, A.; Weiß, S., Engineering and Manufacturing Technology of Green Epoxy Resin Coatings Modified with Recycled Fine Aggregates. International Journal of Precision Engineering and Manufacturing-Green Technology (2021) 9 (1), 253-271. [8] Kim, Y. J.; Shin, T. S.; Choi, H. D.; Kwon, J. H.; Chung, Y.-C.; Yoon, H. G., Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon (2005) 43 (1), 23-30. [9] Aradhana, R.; Mohanty, S.; Nayak, S. K., A review on epoxy-based electrically conductive adhesives. International Journal of Adhesion and Adhesives (2020) 99. [10] Spagna, G.; Pifferi, P. G.; Martino, A., Pectinlyase immobilization on epoxy supports for application in the food processing industry. Journal of Chemical Technology & Biotechnology (2007) 57 (4), 379-385. [11] Yousef, S.; Eimontas, J.; Subadra, S. P.; Striūgas, N., Functionalization of char derived from pyrolysis of metallised food packaging plastics waste and its application as a filler in fiberglass/epoxy composites. Process Safety and Environmental Protection (2021) 147, 723-733. [12] Viet, N. V.; Wang, Q.; Kuo, W. S., Effective Young's modulus of carbon nanotube/epoxy composites. Composites Part B: Engineering (2016) 94, 160-166. [13] aGonzalez-Dominguez, J. M.; Anson-Casaos, A.; Diez-Pascual, A. M.; Ashrafi, B.; Naffakh, M.; Backman, D.; Stadler, H.; Johnston, A.; Gomez, M.; Martinez, M. T., Solvent-free preparation of high-toughness epoxy--SWNT composite materials. ACS Appl Mater Interfaces (2011) 3 (5), 1441-50. [14] Moisala, A.; Li, Q.; Kinloch, I. A.; Windle, A. H., Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Composites Science and Technology (2006) 66 (10), 1285-1288. [15] McCoy, J. D.; Ancipink, W. B.; Clarkson, C. M.; Kropka, J. M.; Celina, M. C.; Giron, N. H.; Hailesilassie, L.; Fredj, N., Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine. Polymer (2016) 105, 243-254. [16] Fang, X.; Guo, X.; Tang, W.; Gu, Q.; Wu, Y.; Sun, H.; Gao, J., Efficient Toughening of DGEBA with a Bio-Based Protocatechuic Acid Derivative. ACS Omega (2023) 8 (11), 9962-9968. [17] Zhanpeng, G.; Hechen, L.; Le, L.; Xuan, W.; Yu, S. In Comparative study on the performance of Itaconic Acid based epoxy resin and bisphenol a epoxy resin, 22nd International Symposium on High Voltage Engineering (ISH 2021), 21-26 Nov. 2021; 2021; pp 966-971. [18] Liu, Y.; Yang, G.; Xiao, H.-M.; Feng, Q.-P.; Fu, S.-Y., Mechanical properties of cryogenic epoxy adhesives: Effects of mixed curing agent content. International Journal of Adhesion and Adhesives (2013) 41, 113-118. [19] Yu, S.; Li, X.; Zou, M.; Guo, X.; Ma, H.; Wang, S., Effect of the Aromatic Amine Curing Agent Structure on Properties of Epoxy Resin-Based Syntactic Foams. ACS Omega (2020) 5 (36), 23268-23275. [20] Ren, Q.; Xu, H.; Yu, Q.; Zhu, S., Development of Epoxy Foaming with CO2 as Latent Blowing Agent and Principle in Selection of Amine Curing Agent. Industrial & Engineering Chemistry Research (2015) 54 (44), 11056-11064. [21] Chunfu, C.; Bin, L.; Masao, K.; Daoqiang, L., Epoxy Adhesives. In Adhesives and Adhesive Joints in Industry Applications, Anna, R., Ed. IntechOpen: Rijeka, 2019; p Ch. 3. [22] Razack, N. A.; Varghese, L. A., The effect of various hardeners on the mechanical and thermal properties of epoxy resin. International Journal of Engineering Research & Technology (IJERT) (2014) 3 (1), 2662-2665. [23] Babayevsky, P. G.; Gillham, J. K., Epoxy thermosetting systems: Dynamic mechanical analysis of the reactions of aromatic diamines with the diglycidyl ether of bisphenol A. Journal of Applied Polymer Science (1973) 17 (7), 2067-2088. [24] Liang, B.; Cao, J.; Hong, X.; Wang, C., Synthesis and properties of a novel phosphorous-containing flame-retardant hardener for epoxy resin. Journal of Applied Polymer Science (2013) 128 (5), 2759-2765. [25] Grimsley, B. W.; Cano, R. J.; Hubert, P.; Loos, A. C.; Pipes, R. B.; Song, X., Effects of Amine and Anhydride Curing Agents on the VARTM Matrix Processing Properties. S.A.M.P.E. (2002) 38 (4). [26] Wazarkar, K.; Kathalewar, M.; Sabnis, A., Anticorrosive and insulating properties of cardanol based anhydride curing agent for epoxy coatings. Reactive and Functional Polymers (2018) 122, 148-157. [27] Fawcett, I. W.; Taylor, A. J.; Pepys, J., Asthma due to inhaled chemical agents--epoxy resin systems containing phthalic acid anhydride, trimellitic acid anhydride and triethylene tetramine. Clin Allergy (1977) 7 (1), 1-14. [28] Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K., Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochimica Acta (2017) 654, 112-120. [29] Zhou, J.; Shi, C.; Mei, B.; Yuan, R.; Fu, Z., Research on the technology and the mechanical properties of the microwave processing of polymer. Journal of Materials Processing Technology (2003) 137 (1-3), 156-158. [30] Huang, K.; Liu, Z.; Zhang, J.; Li, S.; Li, M.; Xia, J.; Zhou, Y., A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties. European Polymer Journal (2015) 70, 45-54. [31] Yuan, Y. C.; Rong, M. Z.; Zhang, M. Q.; Chen, J.; Yang, G. C.; Li, X. M., Self-Healing Polymeric Materials Using Epoxy/Mercaptan as the Healant. Macromolecules (2008) 41 (14), 5197-5202. [32] Arimitsu, K.; Fuse, S.; Kudo, K.; Furutani, M., Imidazole derivatives as latent curing agents for epoxy thermosetting resins. Materials Letters (2015) 161, 408-410. [33] Qin, J.; Woloctt, M.; Zhang, J., Use of Polycarboxylic Acid Derived from Partially Depolymerized Lignin As a Curing Agent for Epoxy Application. ACS Sustainable Chemistry & Engineering (2013) 2 (2), 188-193. [34] Atchekzai, J.; Bonnetot, B.; France, B.; Mongeot, H.; Anton, A.; Dubuisson, A.; Chastagner, P., Catalytic curing agents. Polymer Bulletin (1991) 27 (1), 47-52. [35] Groleau, M. R.; Shi, Y. B.; Yee, A. F.; Bertram, J. L.; Sue, H. J.; Yang, P. C., Mode II fracture of composites interlayered with nylon particles. Composites Science and Technology (1996) 56 (11), 1223-1240. [36] Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C., Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Computational Materials Science (2004) 31 (3-4), 225-236. [37] Unnikrishnan, K. P.; Thachil, E. T., Toughening of epoxy resins. Designed Monomers and Polymers (2006) 9 (2), 129-152. [38] Chen, L.; Chen, S., Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin. Progress in Organic Coatings (2004) 49 (3), 252-258. [39] Yoon, T. H.; Priddy Jr, D. B.; Lyle, G. D.; McGrath, J. E., Mechanical and morphological investigations of reactive polysulfone toughened epoxy networks. Macromolecular Symposia (1995) 98 (1), 673-686. [40] Jiang, H.; Wang, R.; Farhan, S.; Zhang, D.; Zheng, S., Curing behavior and thermal and mechanical properties enhancement of tetraglycidyl-4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone using a liquid crystalline epoxy. Polymer International (2016) 65 (4), 430-438. [41] Sweet, K. R.; Stanzione, J. F., Epoxy‐functional thermoplastic copolymers and their incorporation into a thermosetting resin. Journal of Applied Polymer Science (2021) 138 (26). [42] Siddique, S. K.; Sadek, H.; Lee, T. L.; Tsai, C. Y.; Chang, S. Y.; Tsai, H. H.; Lin, T. S.; Manesi, G. M.; Avgeropoulos, A.; Ho, R. M., Block Copolymer Modified Nanonetwork Epoxy Resin for Superior Energy Dissipation. Polymers (Basel) (2022) 14 (9). [43] Zhang, Z.; Liang, G.; Wang, J.; Ren, P., Epoxy/POSS organic–inorganic hybrids: Viscoelastic, mechanical properties and micromorphologies. Polymer Composites (2007) 28 (2), 175-179. [44] Ho, T. H.; Leu, T. S.; Cheng, S. S., Synthesis and properties for interpenetrating polymer network of modified epoxy resins. Journal of Applied Polymer Science (2006) 101 (3), 1872-1879. [45] Yiwen, Y.; Beijun, L.; Li, P., Significantly improving mechanical properties of epoxy resin-based carbon fiber-reinforced plastic composites via introducing oxazolidinone segments. Polymers and Polymer Composites (2022) 30, 09673911211065196. [46] Peng, C.; Wu, Z.; Li, J.; Wang, Z.; Wang, H.; Zhao, M., Synthesis, thermal and mechanical behavior of a silicon/phosphorus containing epoxy resin. Journal of Applied Polymer Science (2015) 132 (46). [47] Hedrick, J. L.; Yilgor, I.; Jurek, M.; Hedrick, J. C.; Wilkes, G. L.; McGrath, J. E., Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis, morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified epoxy networks. Polymer (1991) 32 (11), 2020-2032. [48] Hollingsworth, S. A.; Dror, R. O., Molecular Dynamics Simulation for All. Neuron (2018) 99 (6), 1129-1143. [49] Rountree, C. L.; Kalia, R. K.; Lidorikis, E.; Nakano, A.; Van Brutzel, L.; Vashishta, P., Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations. Annual Review of Materials Research (2002) 32 (1), 377-400. [50] Fan, H. B.; Yuen, M. M. F., Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer (2007) 48 (7), 2174-2178. [51] Foreman, J. P.; Porter, D.; Behzadi, S.; Travis, K. P.; Jones, F. R., Thermodynamic and mechanical properties of amine-cured epoxy resins using group interaction modelling. Journal of Materials Science (2006) 41 (20), 6631-6638. [52] Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M., Molecular modeling of elastic properties of thermosetting polymers using a dynamic deformation approach. Polymer (2013) 54 (13), 3370-3376. [53] Arab, B.; Shokuhfar, A., Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties. Journal of Nano-and electronic Physics (2013) 5. [54] Bermejo, J. S.; Ugarte, C. M., Chemical Crosslinking of PVA and Prediction of Material Properties by Means of Fully Atomistic MD Simulations. Macromolecular Theory and Simulations (2009) 18 (4-5), 259-267. [55] Zihan, W.; Peibin, K.; Tianyu, W.; Dongli, C.; Xiaoping, Y.; Gang, S., Atomistic understanding of cross-linking network in different epoxy resin: Effect of loop structure. Polymer (2022) 243. [56] Li, W.; Ma, J.; Wu, S.; Zhang, J.; Cheng, J., The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: Molecular dynamics simulation study. Polymer Testing (2021) 101. [57] Kim, H.; Choi, J., Subcontinuum Interpretation of Mechanical Behavior for Cross-Linked Epoxy Networks. Macromolecules (2022) 55 (14), 5916-5925. [58] Gaikwad, P. S.; Krieg, A. S.; Deshpande, P. P.; Patil, S. U.; King, J. A.; Maiaru, M.; Odegard, G. M., Understanding the Origin of the Low Cure Shrinkage of Polybenzoxazine Resin by Computational Simulation. ACS Applied Polymer Materials (2021) 3 (12), 6407-6415. [59] Zhao, Y.; Zhang, Z.; Zhang, S.; Dou, H.; Yang, K.; Yang, W., Molecular dynamics study on thermal and mechanical properties of AOO modified DGEBA ‐anhydride insulating materials for high voltage GIS. Journal of Applied Polymer Science (2021) 138 (40). [60]a Odagiri, N.; Shirasu, K.; Kawagoe, Y.; Kikugawa, G.; Oya, Y.; Kishimoto, N.; Ohuchi, F. S.; Okabe, T., Amine/epoxy stoichiometric ratio dependence of crosslinked structure and ductility in amine‐cured epoxy thermosetting resins. Journal of Applied Polymer Science (2021) 138 (23). [61] Chowdhury, S. C.; Elder, R. M.; Sirk, T. W.; Gillespie, J. W., Epoxy resin thermo-mechanics and failure modes: Effects of cure and cross-linker length. Composites Part B: Engineering (2020) 186. [62] Liu, C.; Ning, W.; Tam, L. H.; Yu, Z., Understanding fracture behavior of epoxy-based polymer using molecular dynamics simulation. J Mol Graph Model (2020) 101, 107757. [63] Schichtel, J. J.; Chattopadhyay, A., Modeling thermoset polymers using an improved molecular dynamics crosslinking methodology. Computational Materials Science (2020) 174. [64] Karuth, A.; Alesadi, A.; Vashisth, A.; Xia, W.; Rasulev, B., Reactive Molecular Dynamics Study of Hygrothermal Degradation of Crosslinked Epoxy Polymers. ACS Applied Polymer Materials (2022) 4 (6), 4411-4423. [65] Li, X.; Zhang, X.; Chen, J.; Huang, L.; Lv, Y., The mechanical properties and creep behavior of epoxy polymer under the marine environment: A molecular dynamics investigation. Materials Today Communications (2021) 28. [66] Hou, D.; Yang, Q.; Wang, P.; Jin, Z.; Wang, M.; Zhang, Y.; Wang, X., Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions. Cement and Concrete Research (2021) 146. [67] Sheng, C.; Wu, G.; Sun, X.; Liu, S., Molecular Dynamics Investigation of the Thermo-Mechanical Properties of the Moisture Invaded and Cross-Linked Epoxy System. Polymers (Basel) (2021) 14 (1). [68] Xie, J.; Chen, K.; Xiao, C.; Xie, Q.; Lü, F., Deterioration of FRP/RPUF interfacial bond strength under moisture intrusion: An analysis from the perspective of adsorption. Journal of Molecular Liquids (2022) 366. [69] Jin, K.; Luo, H.; Wang, Z.; Wang, H.; Tao, J., Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Materials & Design (2020) 194. [70] Li, Y.; Goswami, M.; Zhang, Y.; Liu, T.; Zhang, J.; Kessler, M. R.; Wang, L.; Rios, O., Combined light- and heat-induced shape memory behavior of anthracene-based epoxy elastomers. Sci Rep (2020) 10 (1), 20214. [71] Vuković, F.; Swan, S. R.; Reyes, L. Q.; Varley, R. J.; Walsh, T. R., Beyond the ring flip: A molecular signature of the glass–rubber transition in tetrafunctional epoxy resins. Polymer (2020) 206. [72] Cao, L.; Yang, L.; Xu, Y.; Yin, Q.; Huang, Y.; Chang, G., A Toughening and Anti-Counterfeiting Benzotriazole-Based High-Performance Polymer Film Driven by Appropriate Intermolecular Coordination Force. Macromol Rapid Commun (2021) 42 (4), e2000617. [73] Zhou, J.; Heng, Z.; Wu, H.; Zhang, H.; Chen, Y.; Zhou, S.; Zou, H.; Liang, M., Preparation of Damping Structural Integrated Epoxy Resin via “Rigid-Structure Dilution” and the Study on Dangling Chains Involved Segment Interactions. Industrial & Engineering Chemistry Research (2019) 59 (1), 205-214. [74] Zhao, F.; Zhang, H.; Zhang, D.; Wang, X.; Wang, D.; Zhang, J.; Cheng, J.; Gao, F., Molecular insights into the 'defects' network in the thermosets and the influence on the mechanical performance. RSC Adv (2022) 12 (35), 22342-22350. [75] Cao, K.; Zhou, W.; Chen, L.; He, J.; Zhan, L.; Chen, Q.; Yu, H.; He, X., Investigation of packaging adhesive properties by molecular dynamics and experiments. Journal of Applied Polymer Science (2020) 138 (1). [76] Patil, S. U.; Shah, S. P.; Olaya, M.; Deshpande, P. P.; Maiaru, M.; Odegard, G. M., Reactive Molecular Dynamics Simulation of Epoxy for the Full Cross-Linking Process. ACS Applied Polymer Materials (2021) 3 (11), 5788-5797. [77] Maicas, R.; Yungerman, I.; Weber, Y. B.; Srebnik, S., United-Atom Molecular Dynamics Study of the Mechanical and Thermomechanical Properties of an Industrial Epoxy. Polymers (Basel) (2021) 13 (19). [78] Odegard, G. M.; Patil, S. U.; Deshpande, P. P.; Kanhaiya, K.; Winetrout, J. J.; Heinz, H.; Shah, S. P.; Maiaru, M., Molecular Dynamics Modeling of Epoxy Resins Using the Reactive Interface Force Field. Macromolecules (2021) 54 (21), 9815-9824. [79] Erdol, M.; Konukman, A. E. S.; Oktem, A. S., The effect of cell-size, cross-linking ratio, and force fields on the determination of properties of epoxy crosslinked by heuristic protocol. Modelling and Simulation in Materials Science and Engineering (2021) 29 (8). [80] Li, X.; Zhang, X.; Chen, J.; Huang, L.; Lv, Y., Uniaxial Tensile Creep Behavior of Epoxy-Based Polymer Using Molecular Simulation. Polymers (Basel) (2021) 13 (2). [81] Wan, X.; Demir, B.; An, M.; Walsh, T. R.; Yang, N., Thermal conductivities and mechanical properties of epoxy resin as a function of the degree of cross-linking. International Journal of Heat and Mass Transfer (2021) 180. [82] Zinck, P.; Gérard, J.-F., Thermo-hydrolytic resistance of polyepoxide–glass fibres interfaces by the microbond test. Composites Science and Technology (2008) 68 (9), 2028-2033. [83] Ribeiro, H.; Trigueiro, J. P. C.; Silva, W. M.; Woellner, C. F.; Owuor, P. S.; Cristian Chipara, A.; Lopes, M. C.; Tiwary, C. S.; Pedrotti, J. J.; Villegas Salvatierra, R.; Tour, J. M.; Chopra, N.; Odeh, I. N.; Silva, G. G.; Ajayan, P. M., Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites. ACS Applied Materials & Interfaces (2019) 11 (27), 24485-24492. [84] Sun, D.; Sun, G.; Zhu, X.; Ye, F.; Xu, J., Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel (2018) 211, 609-620. [85] Ding, W.; Shi, J.; Wei, W.; Cao, C.; Jin, H., A molecular dynamics simulation study on solubility behaviors of polycyclic aromatic hydrocarbons in supercritical water/hydrogen environment. International Journal of Hydrogen Energy (2021) 46 (3), 2899-2904. [86] Pei, J.; Wu, Z.; Hu, Y.; Fu, X.; Wang, J.; Song, X.; Sun, Z.; Wang, M., Molecular dynamic simulations and experimental study on pBAMO-b-GAP copolymer/energetic plasticizer mixed systems. FirePhysChem (2022) 2 (1), 67-71. [87] Sun, H.; Jin, Z.; Yang, C.; Akkermans, R. L.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M., COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model (2016) 22 (2), 47. [88] Toukmaji, A. Y.; Board Jr, J. A., Ewald summation techniques in perspective: a survey. Computer physics communications (1996) 95 (2-3), 73-92. [89] Shokuhfar, A.; Arab, B., The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model (2013) 19 (9), 3719-31. [90] Jeyranpour, F.; Alahyarizadeh, G.; Arab, B., Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J Mol Graph Model (2015) 62, 157-164. [91] Wu, C.; Xu, W., Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer (2007) 48 (19), 5802-5812. [92] Garcia, F. G.; Soares, B. G.; Pita, V. J. R. R.; Sánchez, R.; Rieumont, J., Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science (2007) 106 (3), 2047-2055. [93] Shenogina, N. B.; Tsige, M.; Mukhopadhyay, S.; Patnaik, S., Molecular modeling of thermosetting polymers: Effects of degree of curing and chain length on thermo-mechanical properties. ICCM International Conferences on Composite Materials (2011). [94] Qi, B.; Zhang, Q.; Bannister, M.; Mai, Y.-W., Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Composite structures (2006) 75 (1-4), 514-519. [95] Misumi, J.; Ganesh, R.; Sockalingam, S.; Gillespie Jr, J. W., Experimental characterization of tensile properties of epoxy resin by using micro-fiber specimens. Journal of Reinforced Plastics and Composites (2016) 35 (24), 1792-1801. [96] Niedermann, P.; Szebényi, G.; Toldy, A., Novel high glass temperature sugar-based epoxy resins: Characterization and comparison to mineral oil-based aliphatic and aromatic resins. Express Polymer Letters (2015) 9 (2), 85-94. [97] Fonseca, E.; da Silva, V. D.; Klitzke, J. S.; Schrekker, H. S.; Amico, S. C., Imidazolium ionic liquids as fracture toughening agents in DGEBA-TETA epoxy resin. Polymer Testing (2020) 87, 106556. [98] Aziz, M. E., A study mechanical properties of epoxy resin cured at constant curing time and temperature with different hardeners. (2011). [99] Thangaraj, M.; Arjunan, S.; Radha Krishnan, M.; Chelladurai, P. S., Heat tolerant epoxy-amine functionalized graphene oxide composites for insulation applications. Journal of Adhesion Science and Technology (2020) 34 (16), 1774-1795. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88767 | - |
| dc.description.abstract | 環氧樹脂是一種廣泛應用的高分子聚合物,具備優異的化學穩定性、機械性質及容易加工等優點,長久以來,學者們已投入了大量研究成本與資源在環氧樹脂的研究當中,但對於環氧樹脂的研發上尚未存在一個通用的準則,因此本論文導入分子動力學(Molecular dynamics)應用於開發具備優異機械性質的環氧樹脂固化劑,選用最常用的環氧單體DGEBA作為主要系統。首先我們優化現存分子動力學預測機械性質的模擬流程,使預測更加準確、快速且具有可再現性,並將優化後的模擬方法預測現今工業及學術領域當中最具代表性的環氧樹脂系統DGEBA/DETDA及DGEBA/TETA的機械性質,並與該系統文獻中實驗值與模擬值進行比較,成功驗證經由優化後模擬方法的正確性,同時也利用徑向分佈函數(radial distribution function)及分子形貌圖探討以上兩系統經動力學平衡後構型的差異性。接著運用優化後的模擬方法分析芳香環種類及胺基數目對機械性質的影響,其中觀察到經由萘環(Naphthalene)改質後能大幅提升系統所表現機械性質與胺基數目並不是越多對機械性質提升便愈好。然後我們將工業級固化劑DDS及非工業級固化劑BABB作為參考對象,並進行一系列的改質設計,探討改質芳香環數目對機械性質表現的關聯性,根據研究結果得出改質芳香環數目並不是愈多愈好。最後結合以上所找出重要關鍵因素,設計出具有優異機械性質的芳香接枝環氧樹脂固化劑,相較於未改質固化劑楊氏模量提升了41%。主要工作在建立一個以計算模擬預測優先,實驗驗證在後的新材料研發方法,從而取代現有的以經驗和實驗為主的材料研發模式,有效地降低研發成本並可以應用於不同材料系統。 | zh_TW |
| dc.description.abstract | Epoxy resin is a popular polymer that has great chemical stability, mechanical properties, and manufacturing simplicity. Scholars have long dedicated major research funds and efforts in the study of epoxy resins. However, no comprehensive guidelines for the creation of epoxy resins are currently available. Therefore, the most widely used epoxy monomer, DGEBA, is selected as the main system in this thesis, which also introduces the application of Molecular Dynamics to develop curing agents of epoxy resin with outstanding mechanical properties. First, we optimize the existing MD simulation process for predicting mechanical properties, making predictions faster, more accurate, and more reproducible. The optimized simulation approach is then utilized to estimate the mechanical properties of two representative epoxy resin systems, DGEBA/DETDA and DGEBA/TETA, which are frequently employed in industrial and academic settings. We successfully validate the accuracy of the optimized simulation method by comparing simulated results to experimental values from the literatures. Additionally, we analyze the differences in configurations of the two systems following dynamic equilibrium using the radial distribution function and molecular morphology analysis. Next, we investigate the influence of different aromatic ring types and the quantity of amine groups on mechanical properties using the optimal simulation method. It is observed that adding a naphthalene to the system greatly enhances its mechanical properties, although increasing the amount of amine groups does not always result in superior mechanical properties. Then, using industrial-grade curing agent DDS and non-industrial-grade curing agent BABB as reference materials, we run a series of modification designs to investigate the relationship between the number of modified aromatic rings and mechanical property performance. According to the research results, increasing in the number of modified aromatic rings does not necessarily result in improved mechanical properties. Finally, combining the identified key factors, we design aromatic-grafted epoxy resin curing agents with excellent mechanical properties. The Young's modulus is enhanced by 41% when compared to the unmodified curing agent. The primary goal of this work is to design a novel material development process that prioritizes computational simulation prediction over empirical and experimental methodologies, effectively lowering development costs and allowing applicability in a wide range of material systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:42:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:42:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 前言 1 第二章 模擬方法 11 2.1 力場選擇 11 2.2 模型建構 12 2.3 模擬流程 12 2.4 徑向分布函數(Radial distribution function,RDF) 15 第三章 結果與討論 18 3.1 DETDA/TETA—環氧樹脂系統各交聯密度機械性質 18 3.2 探討影響單一芳香環固化劑機械性質之因素 20 3.3 探討影響多芳香環固化劑機械性質之因素 23 第四章 結論 44 參考文獻 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 環氧樹脂 | zh_TW |
| dc.subject | 分子形貌圖 | zh_TW |
| dc.subject | 徑向分布函數 | zh_TW |
| dc.subject | Mechanical properties | en |
| dc.subject | Epoxy resin | en |
| dc.subject | Radial distribution function | en |
| dc.subject | Molecular morphology | en |
| dc.subject | Molecular dynamic | en |
| dc.title | 運用分子動力學探討分子結構對於環氧樹脂系統機械性質的影響 | zh_TW |
| dc.title | Investigating the Effects of Molecular Structures on the Mechanical Properties of Epoxy Resin Systems by Molecular Dynamics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭如忠;陳錦文 | zh_TW |
| dc.contributor.oralexamcommittee | Ru-Jong Jeng;Chin-Wen Chen | en |
| dc.subject.keyword | 環氧樹脂,機械性質,分子動力學,徑向分布函數,分子形貌圖, | zh_TW |
| dc.subject.keyword | Epoxy resin,Mechanical properties,Molecular dynamic,Radial distribution function,Molecular morphology, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202302652 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
