Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕居振zh_TW
dc.contributor.advisorChu-Chen Chuehen
dc.contributor.author李杰勵zh_TW
dc.contributor.authorChieh-Li Leeen
dc.date.accessioned2023-08-15T17:41:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citation1. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J., "Electrochemical energy storage for green grid". Chemical Reviews 2011, 111 (5), 3577-3613.
2. Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.-M., "Advanced Materials for Energy Storage". Advanced Materials 2010, 22 (8), E28-E62.
3. Whittingham, M. S., "Electrical energy storage and intercalation chemistry". Science 1976, 192 (4244), 1126-7.
4. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density". Materials Research Bulletin 1980, 15 (6), 783-789.
5. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., "Lithium insertion into manganese spinels". Materials Research Bulletin 1983, 18 (4), 461-472.
6. Zhang, S. S., "A review on electrolyte additives for lithium-ion batteries". Journal of Power Sources 2006, 162 (2), 1379-1394.
7. Long, L.; Wang, S.; Xiao, M.; Meng, Y., "Polymer electrolytes for lithium polymer batteries". Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
8. Fenton, D., "Complexes of Alkali Metal Ions with Poly (etylene oxide)". Polymer 1973, 14, 589.
9. Wright, P. V., "Electrical conductivity in ionic complexes of poly(ethylene oxide)". British Polymer Journal 1975, 7 (5), 319-327.
10. Kim, C.; Oh, S., "Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes". Electrochimica Acta 2000, 45, 2101-2109.
11. Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A., "LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation". Electrochemical and Solid-State Letters 2002, 5 (1), A26.
12. Aravindan, V.; Vickraman, P.; Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S., "Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries". Current Applied Physics 2013, 13 (1), 293-297.
13. Passiniemi, P.; Takkumäki, S.; Kankare, J.; Syrjämä, M., "Ionic conduction in ethylene oxide-propylene oxide copolymers containing LiClO4". Solid State Ionics 1988, 28-30, 1001-1003.
14. Bakker, A.; Lindgren, J.; Hermansson, K., "Polymer electrolytes based on triblock-copoly(oxyethylene/oxypropylene/oxyethylene) systems". Polymer 1996, 37 (10), 1871-1878.
15. Marzantowicz, M.; Pożyczka, K.; Brzozowski, M.; Dygas, J. R.; Krok, F.; Florjańczyk, Z.; Lapienis, G., "From polymer to polyelectrolyte: Studies of star-branched poly(ethylene oxide) with lithium functional groups". Electrochimica Acta 2014, 115, 612-620.
16. Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E., "Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers". Polymer 1984, 25 (9), 1291-1296.
17. Brandell, D.; Kasemägi, H.; Tamm, T.; Aabloo, A., "Molecular dynamics modeling the Li-PolystyreneTFSI/PEO blend". Solid State Ionics 2014, 262, 769-773.
18. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., "Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol)". Journal of Materials Science 1987, 22 (5), 1845-1849.
19. Fan, L.; Nan, C.-W.; Zhao, S., "Effect of modified SiO2 on the properties of PEO-based polymer electrolytes". Solid State Ionics 2003, 164 (1), 81-86.
20. Kishimoto, K.; Yoshio, M.; Mukai, T.; Yoshizawa, M.; Ohno, H.; Kato, T., "Nanostructured Anisotropic Ion-Conductive Films". Journal of the American Chemical Society 2003, 125 (11), 3196-3197.
21. Azizi Samir, M. A. S.; Alloin, F.; Sanchez, J.-Y.; Dufresne, A., "Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers". Macromolecules 2004, 37 (13), 4839-4844.
22. Mogurampelly, S.; Ganesan, V., "Effect of Nanoparticles on Ion Transport in Polymer Electrolytes". Macromolecules 2015, 48 (8), 2773-2786.
23. Zhu, X.; Wang, K.; Xu, Y.; Zhang, G.; Li, S.; Li, C.; Zhang, X.; Sun, X.; Ge, X.; Ma, Y., "Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes". Energy Storage Materials 2021, 36, 291-308.
24. Lu, H.; Behm, M.; Leijonmarck, S.; Lindbergh, G.; Cornell, A., "Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder". ACS Applied Materials & Interfaces 2016, 8 (28), 18097-18106.
25. Nair, J. R.; Chiappone, A.; Gerbaldi, C.; Ijeri, V. S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N., "Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties". Electrochimica Acta 2011, 57, 104-111.
26. Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S., "Commercial application of cellulose nano-composites–A review". Biotechnology Reports 2019, 21, e00316.
27. Chun, S.-J.; Choi, E.-S.; Lee, E.-H.; Kim, J. H.; Lee, S.-Y.; Lee, S.-Y., "Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries". Journal of Materials Chemistry 2012, 22 (32), 16618-16626.
28. Kim, J.-H.; Kim, J.-H.; Choi, E.-S.; Yu, H. K.; Kim, J. H.; Wu, Q.; Chun, S.-J.; Lee, S.-Y.; Lee, S.-Y., "Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries". Journal of Power Sources 2013, 242, 533-540.
29. Liu, J.; Yang, K.; Mo, Y.; Wang, S.; Han, D.; Xiao, M.; Meng, Y., "Highly safe lithium-ion batteries: High strength separator from polyformaldehyde/cellulose nanofibers blend". Journal of Power Sources 2018, 400, 502-510.
30. Isogai, A.; Saito, T.; Fukuzumi, H., "TEMPO-oxidized cellulose nanofibers". Nanoscale 2011, 3 (1), 71-85.
31. Saito, T.; Yanagisawa, M.; Isogai, A., "TEMPO-mediated Oxidation of Native Cellulose: SEC–MALLS Analysis of Water-soluble and -Insoluble Fractions in the Oxidized Products". Cellulose 2005, 12 (3), 305-315.
32. Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A., "Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose". Biomacromolecules 2007, 8 (8), 2485-2491.
33. Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A., "Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation". Biomacromolecules 2009, 10 (1), 162-165.
34. Kim, H.; Guccini, V.; Lu, H.; Salazar-Alvarez, G.; Lindbergh, G.; Cornell, A., "Lithium Ion Battery Separators Based On Carboxylated Cellulose Nanofibers From Wood". ACS Applied Energy Materials 2019, 2 (2), 1241-1250.
35. Qin, H.; Fu, K.; Zhang, Y.; Ye, Y.; Song, M.; Kuang, Y.; Jang, S.-H.; Jiang, F.; Cui, L., "Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte". Energy Storage Materials 2020, 28, 293-299.
36. Tarascon, J. M.; Armand, M., "Issues and challenges facing rechargeable lithium batteries". Nature 2001, 414 (6861), 359-367.
37. Xue, Z.; He, D.; Xie, X., "Poly(ethylene oxide)-based electrolytes for lithium-ion batteries". Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
38. Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C., "Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group?". Energy & Environmental Science 2020, 13 (5), 1318-1325.
39. Kim, H.; Mattinen, U.; Guccini, V.; Liu, H.; Salazar-Alvarez, G.; Lindström, R. W.; Lindbergh, G.; Cornell, A., "Feasibility of Chemically Modified Cellulose Nanofiber Membranes as Lithium-Ion Battery Separators". ACS Applied Materials & Interfaces 2020, 12 (37), 41211-41222.
40. Fang, Y.; Liu, Q.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y., "High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries". ACS Applied Materials & Interfaces 2015, 7 (32), 17977-17984.
41. Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; Loh, K. P., "High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries". Journal of Materials Chemistry A 2016, 4 (13), 4882-4892.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88765-
dc.description.abstract近幾十年來科技產品的快速發展,大幅提升了人們對儲能裝置的需求。由於具有高能量密度、高工作電壓、優異的循環壽命和重量輕盈等特性,鋰離子電池被認為是最具潛力的儲能裝置。在新世代的鋰離子電池發展中,固態電解質因具有高機械強度、良好的熱穩定性、電解液不易洩漏等優點而備受關注。在目前的固態電解質發展中,高分子固態電解質因額外具有高柔韌性、與電極表面的高相容性、高加工便利性等優勢,而成為了此領域近年來的研究熱點之一。
因此,本研究嘗試以新穎的生質材料奈米纖維素TOCN搭配小分子量的聚乙二醇(PEG)作為高分子基質,發展一複合式高分子固態電解質。得益於TOCN在水溶液中的高分散性與小分子量PEG的高水溶性,我們開發了一簡易水溶液製程,僅需於加熱蒸發水份後,即可透過一步驟製備電解質膜。因TOCN具有奈米級的尺寸大小,加上其與聚乙二醇的良好親和性,所製備的TOCN高分子電解質複合薄膜具有高機械強度與良好的柔韌性。此外,我們進一步透過添加塑化劑、改變高分子基質、與進行TOCN表面改質等不同方式,探討這些變因對於此類固態高分子電解質電化學性能影響。
在此系統中以PEGDME取代PEG作為高分子基質後,得益於PEGDME末端的甲氧基對比PEG末端的羥基與鋰金屬間的反應性較小,我們觀察到了充放電容量的上升與電解質和鋰金屬介面穩定性的改善。此外,我們發現TOCN上的羧酸鈉官能基中的鈉離子會與鋰鹽中的鋰離子進行離子交換,使電池放電時產生不正常的放電平台,藉由將TOCN上的羧酸鈉官能基改質成羧酸鋰官能基後便能解決此問題,且因消除了鈉離子在正負極處產生的不良反應,使製備薄膜的電化學性能得到進一步的提升。本研究的成果與發現可望為纖維素基固態高分子電解質的發展有所貢獻。
zh_TW
dc.description.abstractThe rapid development of technological products in recent decades has significantly increased the demand for energy storage devices. Lithium-ion batteries (LIBs) are considered to be the most promising energy storage devices due to their high energy density, high operating voltage, excellent cycle life and light weight. In the new generation of LIBs, solid-state electrolytes have attracted increasing attention because of their high mechanical strength, good thermal stability, and the fact that the electrolyte is not easy to leak. In the current development of solid electrolytes, solid polymer electrolytes (SPEs) have become on of the hot research topics in this field in recent years because of their additional advantages such as high flexibility, high compatibility with the electrode surface, and high processing convenience.
Therefore, in this study, we attempt to develop composite SPEs by using a novel biomaterial, TEMPO-oxidized cellulose nanofiber (TOCN) and small molecular weight (MW) poly(ethylene glycol) (PEG) as the polymer matrix. Thanks to the high dispersibility of TOCN in aqueous solution and the high water solubility of small MW PEG, we develop a simple aqueous process to prepared electrolyte membranes in a single step by heating and evaporating water. Due to the nanoscale size of TOCN and its good affinity with PEG, the prepared composite TOCN SPE membrane has high mechanical strength and good flexibility. In addition, we further investigate the effects of different variables on the electrochemical performance of the prepared SPEs by adding plasticizers, changing the polymer matrix, and modifying the TOCN surface.
After replacing PEG with PEGDME as the polymer matrix in this system, we observe an increase in the charge/discharge capacity and an improvement in the stability of the interface between the SPE and the Li metal due to the lower reactivity between the methoxy group at the end of PEGDME and the Li metal compared to the hydroxy group at the end of PEG. In addition, we found that the sodium ions in the sodium carboxylate functional group on TOCN would exchange with the lithium ions in the lithium salt, resulting in an abnormal discharge platform when the battery was discharged. This can be solved by modifying the sodium carboxylate functional group on TOCN to a lithium carboxylate functional group, and the electrochemical performance of the prepared films was further improved by eliminating the undesirable reaction of the sodium ions at the anode and cathode. The results and findings of this study are expected to contribute to the development of cellulosed-based SPEs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:41:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:41:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Introduction of Lithium-Ion Batteries 1
1.1.1 Features of Lithium-Ion Batteries 1
1.1.2 Evolution of Lithium-Ion Batteries 2
1.2 Introduction of Solid Polymer Electrolytes 3
1.2.1 Ion Transport Mechanism of PEO 5
1.3 Research Motivation 6
1.3.1 Nanocellulose Used in SPEs 8
1.3.2 TEMPO-Oxidized Cellulose Nanofibers 9
Chapter 2 Experiment 15
2.1 Introduction 15
2.2 Experimental Section 15
2.2.1 Materials 15
2.2.2 TOCN-based SPE Fabrication 16
2.2.3 PEO SPE Fabrication 17
2.2.4 TOCN Surface Modification 17
2.2.5 PEG/LiTFSI Celgard Electrolyte Fabrication 18
2.2.6 Material Characterization 18
2.2.7 Electrochemical Characterization 19
Chapter 3 Using Eco-Friendly Cellulose Nanofiber to Fabricate Composite Solid Polymer Electrolyte in Lithium-Ion Battery 22
3.1 Introduction 22
3.2 Results and Discussion 25
3.2.1 Material Characterization 25
3.2.2 Electrochemical Characterization 29
3.2.3 Application of PEGDME Polymer Matrix in SPE 34
3.2.4 Surface Modification of TOCN for SPE 36
Chapter 4 Conclusion and Future work 55
Reference 57
-
dc.language.isoen-
dc.subject鋰離子電池zh_TW
dc.subject奈米纖維素zh_TW
dc.subject固態高分子電解質zh_TW
dc.subjectTOCNzh_TW
dc.subject表面改質zh_TW
dc.subjectsolid polymer electrolyteen
dc.subjectcellulose nanofibersen
dc.subjectTOCNen
dc.subjectlithium-ion batteriesen
dc.subjectsurface modificationen
dc.title纖維素基高分子固態電解質之材料設計與電池效能測試zh_TW
dc.titleMaterial Design and Battery Performance Evaluation of Cellulose-Based Solid Polymer Electrolytesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李文亞;林彥丞zh_TW
dc.contributor.oralexamcommitteeWen-Ya Lee;Yan-Cheng Linen
dc.subject.keyword鋰離子電池,固態高分子電解質,奈米纖維素,TOCN,表面改質,zh_TW
dc.subject.keywordlithium-ion batteries,solid polymer electrolyte,cellulose nanofibers,TOCN,surface modification,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202302485-
dc.rights.note未授權-
dc.date.accepted2023-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved